The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover

The aim of this study was to confirm the presence of BADH gene and control whether it plays an important role to protect white clover Trifolium repens L. against oxidative, salt, and drought stresses. Three genotypes possessing BADH and 1 genotype lacking BADH were selected, considering the expression levels of BADH in response to methyl viologen mediated oxidative stress. The genotypes possessing BADH displayed significantly less ion leakage under oxidative stress treatment, compared to that lacking BADH . In order to test salinity tolerance, the plants were treated with 300 mM NaCl for 2 weeks, and to mimic drought conditions, plants were grown without irrigating for 5 days. Under the salt stress, the plants possessing BADH contained lower malondialdehyde levels and higher chlorophyll contents than that of plants lacking BADH . Similarly, under the drought conditions, the plants possessing BADH were found to have increased levels of glycinebetaine, proline, and high relative water contents than the plant lacking BADH . These findings indicate that the plants having BADH exhibited enhanced tolerance to salt and drought stresses. These enhanced tolerances of plants possessing BADH gene is attributed to its ability to induce glycinebetaine synthesis. Moreover, the plants possessing BADH were found to exhibit higher relative feed value under both stress and normal conditions. These plants could be used as forage crops on marginal areas having salinity or drought problems.

___

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS et al. (2008). Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Reports 27 (4): 687-698. doi: 10.1007/s00299-007-0479-4
  • Asci OO, Acar Z (2018). Kaba yemlerde kalite. Ankara, Turkey: TMMOB Ziraat Mühendisleri Odası Yayını (in Turkish).
  • Aung B, Gruber MY, Amyot L, Omari K, Bertrand A et al. (2015). Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnology Reports 9 (6): 379-393. doi: 10.1007/s11816- 015-0375-2
  • Bao AK, Du BQ, Touil L, Kang P, Wang QL et al. (2016). Co‐expression of tonoplast Cation/H+ antiporter and H+‐pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnology Journal 14 (3): 964-975. doi: 10.1111/pbi.12451
  • Bao Y, Zhao R, Li F, Tang W, Han L (2011). Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Molecular Biology Reporter 29 (2): 379-388. doi: 10.1007/ s11105-010-0243-8
  • Bates LS, Waldren RP, Teare I (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1): 205-207. doi: 10.1007/BF00018060
  • Chen TH, Murata N (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science 13 (9): 499-505. doi: 10.1016/j.tplants.2008.06.007
  • Chen TH, Murata N (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell and Environment 34 (1): 1-20. doi: 10.1111/j.1365- 3040.2010.02232.x
  • Di H, Tian Y, Zu H, Meng X, Zeng X et al. (2015). Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica 206 (3): 775-783. doi: 10.1007/s10681-015-1515-z
  • Fan W, Zhang M, Zhang H, Zhang P (2012). Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7 (5): 1-14. doi: 10.1371/journal.pone.0037344
  • Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH (2011). Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environmental and Experimental Botany 74, 106-113. doi: 10.1016/j.envexpbot.2011.05.006
  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N et al. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology 168 (11): 1286-1294. doi: 10.1016/j.jplph.2011.01.010
  • Grieve CM, Grattan SR (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70 (2): 303-307. doi: 10.1007/BF02374789
  • Hare PD, Cress WA, Van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment 21 (6): 535-553. doi: 10.1046/j.1365-3040.1998.00309.x
  • Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997). Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. The Plant Journal 12 (1): 133- 142. doi: 10.1046/j.1365-313X.1997.12010133.x
  • Horie T, Motoda J, Kubo M, Yang H, Yoda K et al. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44 (6): 928-938. doi: 10.1111/j.1365- 313X.2005.02595.x
  • Kaymak G, Acar Z (2020). Determination of salinity tolerance levels of tedera (Bituminaria bituminosa L.) genotypes. Anadolu Journal of Agricultural Sciences 35 (1): 51-58. doi: 10.7161/ omuanajas.608600
  • Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS et al. (2016). Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant Physiology and Biochemistry 100: 75-84. doi: 10.1016/j.plaphy.2016.01.004
  • Khalid M, Bilal M, Hassani D, Iqbal HM, Wang H et al. (2017). Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Botanical Studies 58 (5): 1-7. doi: 10.1186/s40529-016-0160-8
  • Kwon SY, Jeong Y, Lee H, Kim J, Cho K et al. (2002). Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen‐mediated oxidative stress. Plant Cell and Environment 25 (7): 873-882. doi: 10.1046/j.1365- 3040.2002.00870.x
  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC et al. (2014). Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiology and Biochemistry 85: 31-40. doi: 10.1016/j.plaphy.2014.10.010
  • Linn JG, Martin NP (1989). Forage Quality Tests and Interpretation Minnesota Ext. Service AG-FO-2637. Saint Paul, MN, USA: University of Minnesota.
  • Malekzadeh P (2015). Influence of exogenous application of glycinebetaine on antioxidative system and growth of saltstressed soybean seedlings (Glycine max L.). Physiology and Molecular Biology of Plants 21 (2): 225-232. doi: 10.1007/ s12298-015-0292-4
  • Mali B, Thengal S, Pate P (2012). Physico-chemical characteristics of salt affected soil from Barhanpur, MS, India. Annals of Biological Research 3 (8): 4091-4092.
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49 (1): 69-76. doi: 10.1016/S0098-8472(02)00058-8
  • Mertens DR (1987). Predicting intake and digestibility using mathematical models of ruminal function. Journal of Animal Science 64 (5): 1548-1558. doi: 10.2527/jas1987.6451548x
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Murray M, Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8 (19): 4321-4326. doi: 10.1093/nar/8.19.4321Z
  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2 (6): 477-486. doi: 10.1111/j.1467-7652.2004.00093.x
  • Rajasheker G, Jawahar G, Jalaja N, Kumar SA, Kumari PH et al. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. Plant Signaling Molecules. Woodhead Publishing. doi: 10.1016/B978-0-12-816451- 8.00026-5
  • Sakamoto A, Murata N (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany 51 (342): 81-88. doi: 10.1093/jexbot/51.342.81
  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS et al. (1995). Salt tolerance of glycinebetaine-deficient andcontaining maize lines. Plant Physiology 107 (2): 631-638. doi: 10.1104/pp.107.2.631
  • Stange RR, Ralph J, Peng J, Sims JJ, Midland SL et al. (2001). Acidolysis and hot water extraction provide new insights into the composition of the induced ‘lignin-like’ material from squash fruit. Phytochemistry 57 (6): 1005-1011. doi: 10.1016/ S0031-9422(01)00096-6
  • Wang J, Drayton MC, George J, Cogan NO, Baillie RC et al. (2010). Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens L.) by QTL analysis. Theoretical and Applied Genetics 120 (3): 607-619. doi: 10.1007/s00122-009-1179-y
  • Wei Y, Xu Y, Lu P, Wang X, Li Z et al. (2017). Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12 (5): 1-25. doi: 10.1371/ journal.pone.0178313
  • Zhang Z, Shao L, Chang L, Cao Y, Zhang T et al. (2016). Effect of rhizobia symbiosis on lignin levels and forage quality in alfalfa (Medicago sativa L.). Agriculture Ecosystems and Environment 233: 55-59. doi: 10.1016/j.agee.2016.08.035
  • Zhou S, Chen X, Zhang X, Li Y (2008). Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnology Letters 30 (2): 369-376. doi: 10.1007/s10529- 007-9548-6
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK