The effects of the Pho85 signaling pathway on invertase biosynthesis and glucose uptake in Saccharomyces cerevisiae

Glukoz sinyali Saccharomyces cerevisiae’da çok çeşitli metabolik olayları kontrol eder. Glukozun algılanması ve sinyal iletimi işlemi için hücre zarı ve sitoplazmasında bulunan çeşitli sensor proteinler gereklidir. Pho85p, sikline bağlı bir protein kinaz olup ilgili siklin proteinlerine bağlanarak maya hücreleri sitoplazmasında farklı metabolic olayları kontrol eder. Bu çalışmada Pho85p’nin glukoz alımı ve invertaz enzimi biyosentezini kontrol eden glukoz sinyal iletimi yolağındaki işlevleri araştırıldı. S. cerevisiae’da invertaz enziminin SUC2 geninden biyosentezi glukoz baskılanması ve baskının kaldırılması mekanizması ile kontrol edilir. Bununla birlikte, bu araştırmada elde edilen sonuçlar Δpho85 mutantı maya hücrelerinde invertaz biyosentezinin düşük seviyede ve düzensiz olarak meydana geldiğini göstermektedir. Buna ek olarak, elde ettiğimiz sonuçlar Δpho85 mutantına yüksek glukoz uygulandığında invertaz biyosentezinin baskılanmadığını göstermektedir. Ayrıca, Δpho85 mutantında glukoz tüketim hızının yaban tip mayaya göre en az 2 kat daha düşük olduğunu belirledik. Sonuçlarımız S. cerevisiae’da Pho85 işlevinin SUC2 geninden invertaz biyosentezinin kontrol edilmesi ve yüksek oranda glukoz alımı için gerekli olduğunu göstermektedir.

Saccharomyces cerevisiae’da Pho85 sinyal iletim yolağının invertaz biyosentezi ve glukoz alımına etkileri

Glucose signaling controls a wide range of metabolic events in the yeast Saccharomyces cerevisiae. Glucose sensing and signaling processes require a variety of membrane-bound and cytoplasmic sensor proteins. Pho85p is a cyclin-dependent protein kinase that controls different metabolic events upon binding to its cyclin partners in the cytoplasm of yeast cells. In this study, we investigated the roles of Pho85p in the glucose signaling pathways that control invertase biosynthesis and glucose uptake in yeast. The biosynthesis of invertase enzyme from the SUC2 gene is controlled by glucose repression and derepression mechanisms in S. cerevisiae. However, the results of this research indicated that invertase biosynthesis occurs at low levels in a deregulated manner in the Δpho85mutant yeast strain. Furthermore, our results showed that the biosynthesis of invertase is not repressed when the Δpho85 mutant is exposed to high levels of glucose. Moreover, we found that the glucose consumption rate of the Δpho85 mutant is at least 2-fold lower than that of the wild-type yeast strain. Our results indicated that Pho85p functions are essential for the regulated biosynthesis of the invertase enzyme from the SUC2 gene and for the high levels of glucose uptake in S. cerevisiae.

___

  • 1. Carlson M. Regulation of glucose utilization in yeast. Curr Opin Genet Dev 8: 560-564, 1998.
  • 2. Rolland F, Winderickx J, Thevelein JM. Glucose-sensing and - signaling mechanisms in yeast. FEMS Yeast Res 2: 183-201, 2002.
  • 3. Schneper L, Düvel K, Broach JR. Sense and sensibility: nutritional response and signal integration in yeast. Curr Opin Microbiol 7: 624-630, 2004.
  • 4. Gancedo JM. The early steps of glucose signaling in yeast. FEMS Microbiol Rev 32: 673-704, 2008.
  • 5. Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253-282, 2006.
  • 6. Carroll AS, O’Shea EK. pho85 and signaling environmental conditions. Trends Biochem Sci 27: 87-93, 2002.
  • 7. Measday V, Moore L, Retnakaran R et al. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17: 1212-1223, 1997.
  • 8. Wang Z, Wilson WA, Fujino MA et al. The yeast cyclins Pcl6p and Pcl7p are involved in the control of glycogen storage by the cyclin-dependent protein kinase pho85p. FEBS Lett 506: 277- 280, 2001.
  • 9. Boles E, Hollenberg CP. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21: 85-111, 1997.
  • 10. Klockow C, Stahl F, Scheper T et al. In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae. J Biotechnol 135: 161-167, 2008.
  • 11. Carlson M, Botstein D. Two differentially regulated mRNAs with different 5` ends encode secreted and intracellular forms of yeast invertase. Cell 28: 145-154, 1982.
  • 12. Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62: 334-361, 1998.
  • 13. DeVit MJ, Waddle JA, Johnston M. Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8: 1603-1618, 1997.
  • 14. Gavin IM, Simpson RT. Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure. EMBO J 16: 6263-6271, 1997.
  • 15. Türkel S, Turgut T, Lopez MC et al. Mutations in gcr1 affect SUC2 gene expression in Sacchaomyces cerevisiae. Mol Genet Genomics 268, 825-831, 2003.
  • 16. Wu L, Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res 25: 4230-4234, 1997.
  • 17. Türkel S, Bisson LF. Transcription of the HXT4 gene is regulated by Gcr1p and Gcr2p in the yeast S. cerevisiae. Yeast 15: 1045- 1057, 1999.
  • 18. Bisson LF, Coons DM, Kruckeberg AL, Lewis DA. Yeast sugar transporters. Crit Rev Biochem Mol Biol 28: 259-308, 1993.
  • 19. Zeng X, Deminoff SJ, Santangelo GM. Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p. Genetics 147: 493-505, 1997.
  • 20. Lenburg ME, O'Shea EK. Genetic evidence for a morphogenetic function of the Saccharomyces cerevisiae Pho85 cyclindependent kinase. Genetics 157: 39-51, 2001.
  • 21. Brachmann CB, Davies A, Cost GJ et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132, 1998.
  • 22. Celenza JL, Carlson M. Cloning and genetic mapping of SNF1, a gene required for expression of glucose repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 4: 49-53, 1984.
  • 23. Rothe C, Lehle L. Sorting of invertase signal peptide mutants in yeast dependent and independent on the signal recognition particle. Eur J Biochem 252: 16-24, 1998.
  • 24. Goldstein A, Lampen JO. β-D-Fructofuranoside Fructohydrolase from yeast. Methods in Enzymol., 42c: 504- 511, 1975.
  • 25. Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 66: 303-314, 2007.
  • 26. Türkel S. Non-histone proteins Nhp6A and Nhp6B are required for the regulated expression of SUC2 gene of Saccharomyces cerevisiae. J Biosci Bioeng 98: 9-13, 2004.
  • 27. Trumbly RJ. Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6: 15-21, 1992.
  • 28. Pan X, Ye P, Yuan DS et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124: 1069-81, 2006.
  • 29. English CM, Maluf NK, Tripet B. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44: 13673- 13682, 2005.
  • 30. Daganzo SM, Erzberger JP, Lam WM et al. Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13: 2148-2158, 2003.
  • 31. Huang D, Moffat J, Andrews B. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase pho85 in stress adaptation and cell integrity. Mol Cell Biol 22: 5076-5088, 2002.
  • 32. Yu YX, Eriksson P, Stillman DJ. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 20: 2350-2357, 2000.
  • 33. Barbaric S, Walker J, Schmid A et al. Increasing the rate of chromatin remodeling and gene activation - a novel role for the histone acetyltransferase Gcn5. EMBO J 20: 4944-4951, 2001.
  • 34. Van Oevelen CJC, Van Teeffelen HAAM, Timmers HTM. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation. Mol Cell Biol 25: 4863- 4872, 2005.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Evaluation of the hypoglycemic and hypolipidemic activity of Butea monosperma fruit in diabetic human subjects

Fizza NAEEM, Sohail Hassan KHAN

Effects of Chromium VI stress on green alga Ulva lactuca (L.)

Dilek ÜNAL, - *, Nuray O. IŞIK, Atakan SUKATAR

Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells

Ali Jahanban ISFAHLAN, Ahmad MAHMOODZADEH, Abdollah HASSANZADEH, Reza HEIDARI, Rashid JAMEI

A study on the morphology of Argulus foliaceus Lin., 1758 (Crustacea; Branchiura) procured from Çavuşcu Lake (Central Anatolia-Turkey) with scanning electron microscopy

Ali ALAŞ -, - *, Ahmet ÖKTENER, Kemal SOLAK

Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara

Dilek EDİGER, Vildan TÜFEKÇİ, Çolpan Polat BEKEN, Mustafa MANTIKÇI, Neslihan BALKIS

Studies on the shelf life of bread using acidulants and their salts

Omer Mukhtar TARAR, - *, - Salim-ur-REHMAN, Ghulam MUEEN-UD-DIN, Mian Anjum MURTAZA

Aphrodisiac activity and curative effects of Pedalium murex (L.) against ethanol-induced infertility in male rats

Gunasekaran BALAMURUGAN, P. MURALIDHARAN, Satyanarayana POLAPALA

Phytoplankton Composition and Environmental Conditions of the Mucilage Event in the Sea of Marmara

Vildan TÜFEKÇİ, - *, Neslihan BALKIS, Çolpan POLAT BEKEN, Dilek EDİGER, Mustafa MANTIKÇI

Determination of the relationship between some Centaurea species based on SDS-PAGE

Tuna UYSAL, Emine ARSLAN, Osman TUGAY, Kuddisi ERTUĞRUL

Antioxidant, antibacterial, and anticandidal activities of an aquatic plant: duckweed (Lemna minor L. Lemnaceae)

Ekrem KİREÇCİ, Ebru AKKEMİK, Olcay HİSAR, Fevzi TOPAL, İlhami GÜLÇİN