The comparison of antioxidant capacity and cytotoxic, anticarcinogenic, and genotoxic effects of Fe@Au nanosphere magnetic nanoparticles

The comparison of antioxidant capacity and cytotoxic, anticarcinogenic, and genotoxic effects of Fe@Au nanosphere magnetic nanoparticles

Magnetic gold nanoparticles are used in various biomedical, biochemistry, and biotechnology applications due to their controllable size distribution, long-term stability, reduced toxicity, and biocompatibility. Different coating materials, such as proteins, carbohydrates, lipids, and polyphenols, are applied to enhance the biocompatibility of nanoparticles. In this study, the effects of surface coatings of core-shell structured Fe@Au nanosphere magnetic nanoparticles with regard to antioxidant capacity and cytotoxic, anticarcinogenic, and genotoxic properties were investigated. The obtained results demonstrated that avidin-coated Fe@Au nanospheres had higher antioxidant capacities than uncoated nanospheres. Neither avidin-coated nor uncoated nanoparticles had a cytotoxic effect on normal cells (human gingival fibroblast cell line, HGF-1). In addition, they had anticarcinogenic effects on human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF-7), and human colorectal adenocarcinoma (CCL-221). The genotoxic effects of nanoparticles were also evaluated with DNA tail damage ratio.

___

  • Ada K, Turk M, Oguztuzun S, Kilic M, Demirel M, Tandogan N, Ersayar E, Latif O (2010). Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem Cyto 48: 524-529.
  • Amin ML, Joo JY, Yi DK, An SSA (2015). Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release 207: 131-142.
  • Andreu-Navarro A, Fernandez-Romero JM, Gomez-Hens A (2011). Determination of antioxidant additives in foodstuffs by direct measurement of gold nanoparticle formation using resonance light scattering detection. Anal Chim Acta 695: 11-17.
  • Blois MS (1958). Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.
  • Cekic SD, Demir A, Baskan KS, Tutem E, Apak R (2015). Determination of total antioxidant capacity of milk by CUPRAC and ABTS methods with separate characterisation of milk protein fractions. J Dairy Res 82: 177-184.
  • Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M (2005). Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a prodrug to deliver hydrogen peroxide to tissues. P Natl Acad Sci USA 102: 13604-13609.
  • Chen YS, Hung YC, Liau I, Huang GS (2009). Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4: 858- 864.
  • Clutton S (1997). The importance of oxidative stress in apoptosis. Brit Med Bull 53: 662-668.
  • Flora SJS, Dikshit M, Flora G (2007). Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53: 1-3.
  • Fujita T, Nishikawa M, Ohtsubo Y, Ohno J, Takakura Y, Sezaki H, Hashida M (1994). Control of in-vivo fate of albumin derivatives utilizing combined chemical modification. J Drug Target 2: 157-165.
  • Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007). Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316: E756-E759.
  • Gurunathan S, Han JW, Kim JH (2013). Green chemistry approach for the synthesis of biocompatible graphene. Int J Nanomed 8: 2719-2732.
  • Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004). Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer 109: 799-809.
  • Lind K, Kresse M, Debus NP, Muller RH (2002). A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: Comparison of physicochemical properties and the in vivo behaviour. J Drug Target 10: 221-230.
  • Lismont M, Dreesen L (2012). Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon. Mat Sci Eng C-Mater 32: 1437-1442.
  • Liu QJ, Liu HF, Yuan ZL, Wei DW, Ye YZ (2012). Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay. Colloid Surface B 92: 348-352.
  • Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R et al. (1996). Clinical experiences with magnetic drag targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56: 4686-4693.
  • Ma XY, Qian WP (2010). Phenolic acid induced growth of gold nanoshells precursor composites and their application in antioxidant capacity assay. Biosens Bioelectron 26: 1049-1055.
  • Mao ZW, Wang B, Ma L, Gao C, Shen JC (2007). The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomed Nanotech Bio Med 3: 215-223.
  • Nie Z, Liu KJ, Zhong CJ, Wang LF, Yang Y, Tian Q, Liu Y (2007). Enhanced radical scavenging activity by antioxidantfunctionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radical Bio Med 43: 1243-1254.
  • Papisov MI, Bogdanov A, Schaffer B, Nossiff N, Shen T, Weissleder R, Brady TJ (1993). Colloidal magnetic-resonance contrast agents - effect of particle surface on biodistribution. J Magn Magn Mater 122: 383-386.
  • Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH (2011). The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32: 9810-9817.
  • Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007). Cell selective response to gold nanoparticles. Nanomed Nanotech Bio Med 3: 111-119.
  • Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012). Evaluation of antioxidants: Scope, limitations and relevance of assays. Chem Phys Lipids 165: 638-647.
  • Rodriguez-Martinez MA, Ruiz-Torres A (1992). Homeostasis between lipid-peroxidation and antioxidant enzyme activities in healthy human aging. Mech Ageing Dev 66: 213-222.
  • Saleh SM, Muller R, Mader HS, Duerkop A, Wolfbeis OS (2010). Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin. Anal Bioanal Chem 398: 1615-1623.
  • Scampicchio M, Wang J, Blasco AJ, Arribas AS, Mannino S, Escarpa A (2006). Nanoparticle-based assays of antioxidant activity. Anal Chem 78: 2060-2063.
  • Schaffazick SR, Pohlmann AR, de Cordova CAS, Creczynski-Pasa TB, Guterres SS (2005). Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharmaceut 289: 209-213.
  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191.
  • Song XL, Luo XD, Zhang QQ, Zhu AP, Ji LJ, Yan CF (2015). Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J Magn Magn Mater 388: 116- 122.
  • Sudeep PK, Joseph STS, Thomas KG (2005). Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127: 6516-6517.
  • Sun C, Lee JSH, Zhang MQ (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 60: 1252- 1265.
  • Tamer U, Gundogdu Y, Boyaci IH, Pekmez K (2010). Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12: 1187-1196.
  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100: 178-186.
  • Toth IY, Szekeres M, Turcu R, Saringer S, Illes E, Nesztor D, Tombacz E (2014). Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core shell magnetite nanoparticles. Langmuir 30: 15451-15461.
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39: 44-84.
  • Vilela D, Gonzalez MC, Escarpa A (2012). Gold-nanosphere formation using food sample endogenous polyphenols for in vitro assessment of antioxidant capacity. Anal Bioanal Chem 404: 341-349.
  • Vilela D, Gonzalez MC, Escarpa A (2014). (Bio)-synthesis of Au NPs from soy isoflavone extracts as a novel assessment tool of their antioxidant capacity. RSC Adv 4: 3075-3081.
  • Vilela D, Gonzalez MC, Escarpa A (2015). Nanoparticles as analytical tools for in-vitro antioxidant-capacity assessment and beyond. TrAC-Trend Anal Chem 64: 1-16.
  • West WH, Cannon GB, Kay HD, Bonnard GD, Herberman RB (1977). Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line - characterization of effector cells. J Immunol 118: 355-361.
  • Win KY, Feng SS (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26: 2713-2722.
  • Xu W, Xu S, Ji X, Song B, Yuan H, Ma L, Bai Y (2005). Preparation of gold colloid monolayer by immunological identification. Colloid Surface B 40: 169-172.
  • Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76: 1316-1321.
  • Yen NT, Huang MC, Tai C (2001). Genetic variations of randomly amplified polymorphic DNA polymorphisms in Taoyuan and Duroc pigs. J Anim Breed Genet 118: 111-118.
  • Zavisova V, Koneracka M, Kovac J, Kubovcikova M, Antal I, Kopcansky P, Bednarikova M, Muckova M (2015). The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. J Magn Magn Mater 380: 85-89.