k-Shell decomposition reveals structural properties of the gene coexpression network for neurodevelopment

k-Shell decomposition reveals structural properties of the gene coexpression network for neurodevelopment

Neurodevelopment is a dynamic and complex process, which involves interactions of thousands of genes. Understanding the mechanisms of brain development is important for uncovering the genetic architectures of neurodevelopmental disorders such as autism spectrum disorder and intellectual disability. The BrainSpan dataset is an important resource for studying the transcriptional mechanisms governing neurodevelopment. It contains RNA-seq and microarray data for 13 developmental periods in 8 16 brain regions. Various important studies used this dataset, in particular to generate gene coexpression networks. The topology of the BrainSpan gene coexpression network yielded various important gene clusters, which are found to play key roles in diseases. In this work, we analyze the topology of the BrainSpan gene coexpression network using the k-shell decomposition method. k-Shell decomposition is an unsupervised method to decompose a network into layers (shells) using the connectivity information and to detect a nucleus that is central to overall connectivity. Our results show that there are 267 layers in the BrainSpan gene coexpression network. The nucleus contains 2584 genes, which are related to chromatin modification function. We compared and contrasted the structure with the autonomous system level Internet. We found that despite similarities in percolation transition and crust size distribution, there are also differences: the BrainSpan coexpression network has a significantly large nucleus and only a very small number of genes need to access the nucleus first, to be able to connect to other genes in the crust above the nucleus.

___

  • Albert R, Jeong H, Barabási AL (1999). Internet: Diameter of the world-wide web. Nature 401: 130-131.
  • Altaf-Ul-Amine M, Nishikata K, Korna T, Miyasato T, Shinbo Y, Arifuzzaman M, Wada C, Maeda M, Oshima T, Mori H et al. (2003). Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Informatics 14: 498-499.
  • Alvarez-Hamelin J, Dall’Asta L, Barrat A, Vespignani A (2008). K-core decomposition of Internet graphs: hierarchies, selfsimilarity and measurement biases. Netw Heterog Media 3: 371-393.
  • Bader GD, Hogue CWV (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.
  • Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N et al. (2003). Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res 31: 2443-2450.
  • Calvert KL, Doar MB, Zegura EW (1997). Modeling internet topology. IEEE Commun Mag 35: 160-163.
  • Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2003). A model of internet topology using k-shell decomposition. P Natl Acad Sci USA 104: 11150-11154.
  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14: 1.
  • Christensen DL (2016). Prevalence and Characteristics of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR. Surveillance Summaries 65. Atlanta, GA, USA: CDC.
  • Clauset A, Shalizi CR, Newman ME (2009). Power-law distributions in empirical data. SIAM Rev 51: 661-703.
  • Cohen R, Erez K, Ben-Avraham D, Havlin S (2000). Resilience of the Internet to random breakdowns. Phys Rev Lett 85: 4626.
  • De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515: 209-215.
  • Dorogovtsev SN, Goltsev AV, Mendes JFF (2003). k-Core organization of complex networks. Phys Rev Lett 96: 040601.
  • Doyle JC, Alderson DL, Lun L, Low S, Roughan M, Shalunov S, Tanaka R, Willinger W (2005). The “robust yet fragile” nature of the Internet. P Natl Acad Sci USA 102: 14497-14502.
  • Emerson AI, Andrews S, Ahmed I, Azis TK, Malek JA (2015). K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. J Clin Bioinforma 5: 1.
  • Gudenas BL, Wang L (2015). Gene coexpression networks in human brain developmental transcriptomes implicate the association of long noncoding RNAs with intellectual disability. Bioinform Biol Insights 9(Suppl. 1): 21-27.
  • Gulsuner S, McClellan JM (2014). De novo mutations in schizophrenia disrupt genes co-expressed in fetal prefrontal cortex. Neuropsychopharmacology 39: 238-239.
  • Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RC et al. (2013). Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154: 518-529.
  • Hormozdiari F, Penn O, Borenstein E, Eichler EE (2015). The discovery of integrated gene networks for autism and related disorders. Genome Res 25: 142-154.
  • Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001). Lethality and centrality in protein networks. Nature 411: 41-42.
  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AMM, Pletikos M, Meyer KA, Sedmak G et al. (2011). Spatio-temporal transcriptome of the human brain. Nature 478: 483-489.
  • Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010). Identification of influential spreaders in complex networks. Nature Phys 6: 888-893.
  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44: W90-W97.
  • Liscovitch N, French L (2014). Differential co-expression between α-synuclein and IFN-γ signaling genes across development and in Parkinson’s disease. PLoS One 9: e115029.
  • Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, Klei L, Lu C, He X, Li M et al. (2014). DAWN: A framework to identify autism genes and subnetworks using gene expression and genetics. Molecular Autism 5: 1.
  • Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, da Silveira Paulsen B, Belmonte-de-Abreu P, Vieira H, Krepischi AC, Carraro DM et al. (2015). Co-expression network of neuraldifferentiation genes shows specific pattern in schizophrenia. BMC Med Genomics 8: 23.
  • Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ, Aiona K et al. (2014). Transcriptional landscape of the prenatal human brain. Nature 508: 199-206.
  • Reichardt LF (2006). Neurotrophin-regulated signalling pathways. Philos T Roy Soc B 361: 1545-1564.
  • Riazuddin S, Hussain M, Razzaq A, Iqbal Z, Shahzad M, Polla DL, Song Y, van Beusekom E, Khan AA, Tomas-Roca L et al. (2016). Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatr (in press).
  • Seidman SB (1983). Network structure and minimum degree. Soc Networks 5: 269-287.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504
  • Shao J, Buldyrev S, Braunstein L, Havlin S, Stanley HE (2009). Structure of shells in complex networks. Phys Rev E 80: 036105.
  • Tebbenkamp AT, Willsey AJ, State MW, Šestan N (2014). The developmental transcriptome of the human brain: implications for neurodevelopmental disorders. Curr Opin Neurol 27: 149.
  • Van Noort V, Snel B, Huynen MA (2004). The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model. EMBO Rep 5: 280-284.
  • Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos S, Miller JA et al. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155: 997-1007.
  • Wuchty S, Almaas E (2005). Peeling the yeast protein network. Proteomics 5: 444-449.