Preparation and characterization of acellular porcine pericardium for cardiovascular surgery

Preparation and characterization of acellular porcine pericardium for cardiovascular surgery

The aim of this study was to fabricate and characterize acellular porcine pericardium that can be used to patch cardiovascular repair. Porcine pericardial tissues were treated with 10 mM Tris-HCl and sodium dodecyl sulfate (SDS) at different concentrations and time intervals. The optimal decellularization protocol was determined according to elimination of cellular components and DNA via histology and DNA quantification, respectively. There were no significant changes in stress and fracture strain after decellularization. Liquid extracts from the decellularized pericardium caused no cytotoxicity towards human fibroblasts, were capable of supporting an appropriate attachment of human endothelial progenitor cells, and did not cause a local inflammatory effect after 30 days of transplantation in mice.

___

  • Auchincloss H Jr, Sachs DH (1998). Xenogeneic transplantation. Ann Rev Immunol 16: 433-470.
  • Baek HS, Yoo JY, Rah DK, Han DW, Lee DH, Kwon OH, Park JC (2005). Evaluation of the extraction method for the cytotoxicity testing of latex gloves. Yonsei Med J 46: 579-583.
  • Biasi GM, Sternjakob S, Mingazzini PM, Ferrari SA (2002). Nine-year experience of bovine pericardium patch angioplasty during carotid endarterectomy. J Vasc Surg 36: 271-277.
  • Bodnar E, Olsen EG, Florio R, Dobrin J (1986). Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecylsulphate. Thorac Cardiovasc Surg 34: 82-85.
  • Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E (2002). Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11: 457-462.
  • Byrne GW, McGregor CG (2012). Cardiac xenotransplantation: progress and challenges. Curr Opin Organ Transplant 17: 148-154.
  • Cascalho M, Platt JL (2001). The immunological barrier to xenotransplantation. Immunity 14: 437-446.
  • Crapo PM, Gilbert TW, Badylak SF (2011). An overview of tissue and whole organ decellularization processes. Biomaterials 32: 3233-3243.
  • Dong J, Li Y, Mo X (2013). The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J Surg Res 183: 56-67.
  • Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A (2010). The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31: 3590-3595.
  • Gauvin R, Marinov G, Mehri Y, Klein J, Li B, Larouche D, Guzman R, Zhang Z, Germain L, Guidoin R (2013). A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. J Biomater Appl 28: 552-565.
  • Gonçalves AC, Griffiths LG, Anthony RV, Orton EC (2005). Decellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. J Heart Valve Dis 14: 212-217.
  • Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC. (2003). Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 126: 2003-2010.
  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005). Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74: 570-581.
  • Kasimir MT, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G, Simon P (2003). Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 26: 421-427.
  • Kim JH, Cho YP, Kwon TW, Kim H, Kim GE (2012). Ten-year comparative analysis of bovine pericardium and autogenous vein for patch angioplasty in patients undergoing carotid endarterectomy. Ann Vasc Surg 26: 353-358.
  • Lam MT, Wu JC (2012). Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 10: 1039-1049.
  • Liao J, Joyce EM, Sacks MS (2008). Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29: 1065-1074.
  • Liao J, Yang L, Grashow J, Sacks MS (2007). The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng 129: 78-87.
  • Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J, Ingham E (2007). Biocompatibility of acellular human pericardium. J Surg Res 143: 407-414.
  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ et al. (2012). Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125: e2-e220.
  • Nelson DM, Ma Z, Fujimoto KL, Hashizume R, Wagner WR (2011). Intra-myocardial biomaterial injection therapy in the treatment of heart failure: materials, outcomes and challenges. Acta Biomater 7: 1-15.
  • Pires AC, Saporito WF, Cardoso SH, Ramaciotti O (1999). Bovine pericardium used as a cardiovascular patch. Heart Surg Forum 2: 60-69.
  • Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004). Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127: 399-405.
  • Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M (1999). Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res 46: 531-538.
  • Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC (1999). Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res 47: 116-126.
  • Venkatraman S, Boey F, Lao LL (2008). Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33: 853-874.
  • Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, Hu S, Stock UA (2010). Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31: 2549-2554.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

SOMPRASONG SAENGLEE, SANUN JOGLOY, A. PATANOTHAI, Thanaset SENAWONG

AYSUN KILIÇ SÜLOĞLU, GÜLDENİZ SELMANOĞLU, ŞÜKRAN YILMAZ, HANDE CANPINAR

Cytotoxicity and antibiofilm activity of SiO2/cellulose derivative hybrid materials containing silver nanoparticles

Nelly GEORGIEVA, Tsvetlina ANGELOVA, Nadezhda RANGELOVA, Veselina UZUNOVA, Tonya ANDREEVA, Rumiana TZONEVA, Rudolf MÜLLER, Albena MOMCHILEVA

MURAT AYDIN, ARASH HOSSEIN POUR, KAMİL HALİLOĞLU, METİN TOSUN

Cloning and abiotic stress resistance analyses of a new proline-glycine-alanine histidine-rich protein gene from Ipomoea batatas (L.) Lam.

Bin YOUNG, Huan-Huan SHAO, Xin-Rong MA, Xiang TAO

Temel İLGÜN, Kezban Yildiz DALGINLI, Canan GÜLMEZ, Onur ATAKİŞİ

Kadir BİLİR, Marie-theres WEIL, Julia LOCHEAD, Fatma Neşe KÖK, Tobias WERNER

Preparation and characterization of acellular porcine pericardium for cardiovascular surgery

Ha Le Bao TRAN, Trang Thi Huyen DINH, Öy Thi Ngoc NGUYEN, Quan Minh TO, Anh Tho Tuan PHAM

Carbohydrate deprivation upsurges the expression of genes responsible for programmed cell death in inflorescence tissues of oil palm (Elaeis guineensis Jacq.)

Walter AJAMBANG, Hugo VOLKAERT, Sudarsono SUDARSONO

Downregulation of cystathionine γ lyase and endothelial nitric oxide synthase and reduced responsiveness of α1A adrenergic receptors in the kidneys of left ventricular hypertrophied Wistar Kyoto rats

Munavvar Abdul SATTAR, Hassan Anwer ROTHORE, Safia Akhtar KHAN, Nor Azizan ABDULLAH, Edward James JOHNS, Ashfaq AHMAD