Downregulation of cystathionine γ lyase and endothelial nitric oxide synthase and reduced responsiveness of α1A adrenergic receptors in the kidneys of left ventricular hypertrophied Wistar Kyoto rats

Downregulation of cystathionine γ lyase and endothelial nitric oxide synthase and reduced responsiveness of α1A adrenergic receptors in the kidneys of left ventricular hypertrophied Wistar Kyoto rats

This article explores the relationship between the renal expression of cystathionine gamma lyase (CSE) and endothelial nitric oxide synthase (eNOS) and the responsiveness of α1A adrenergic receptors in the renal vasculature following left ventricular hypertrophy (LVH) in rats. LVH was established by administering isoprenaline (5 mg/kg, 5 injections subcutaneously, 72 h apart) with 62 mg/L caffeine in drinking water for 2 weeks. Renal vasoconstrictor responses were measured using local administration of adrenergic agonists noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) and the selective α1A adrenergic antagonist 5-methylurapidil (5-MeU). Mean arterial blood pressure was higher (144 ± 9 vs. 116 ± 4 mmHg) and renal cortical blood perfusion was lower in the LVH group (102 ± 5 vs. 157 ± 19 bpu) compared to the control group (P < 0.05). There was a 68% downregulation of mRNA for renal CSE and 79% for eNOS in the LVH group compared to the control group (taken as 100%) (P < 0.05). The high dose of 5-MeU attenuated the vasoconstrictor responses to NA by 33%, PE by 44%, and ME by 43% in the LVH group compared to the same dose in the control group. The reductions in basal renal cortical perfusion and α1A adrenergic receptor vasoconstrictor responses in LVH were associated with the downregulation of the CSE/H2S and eNOS/NO pathways.

___

  • Abbas S, Munavvar A, Abdullah N, Johns E (2007). Role of α1 - adrenoceptor subtypes in renal haemodynamics in heart failure and diabetic SD rats. Can J Pure Appl Sci 1: 21-34.
  • Abdulla M, Sattar M, Johns E, Abdullah N, Khan MA (2011). Evidence for the role of α1A-adrenoceptor subtype in the control of renal haemodynamics in fructose-fed Sprague– Dawley rat. Eur J Nutr 50: 689-697.
  • Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Abdullah NA, Kaur G, Johns EJ (2014). Functional contribution of α1D-adrenoceptors in the renal vasculature of left ventricular hypertrophy induced with isoprenaline and caffeine in Wistar– Kyoto rats. Can J Physiol Pharmacol 92: 1029-1035.
  • Ahmad FU, Sattar MA, Rathore HA, Abdullah MH, Tan S, Abdullah NA, Johns EJ (2012). Exogenous hydrogen sulfide (H2 S) reduces blood pressure and prevents the progression of diabetic nephropathy in spontaneously hypertensive rats. Renal Failure 34: 203-210.
  • Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, Pei YP, Abdullah NA, Johns EJ (2014). Hydrogen sulphide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Renal Failure 36: 1-8.
  • Arévalo-León LE, Gallardo-Ortíz IA, Urquiza-Marín H, VillalobosMolina R (2003). Evidence for the role of α1D and α1A adrenoceptors in contraction of the rat mesenteric artery. Vascular Pharmacol 40: 91-96.
  • Armenia A, Munavvar A, Abdullah N, Helmi A, Johns EJ (2004). The contribution of adrenoceptor subtype(s) in the renal vasculature of diabetic spontaneously hypertensive rats. Brit J Pharmacol 142: 719-726.
  • Bell DG, Jacobs I, Ellerington K (2001). Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Med Sci Sport Exer 33: 1399-1403.
  • Bredt DS, Snyder SH (1992). Nitric oxide, a novel neuronal messenger. Neuron 8: 3-11.
  • Brunner F, Andrew P, Wölkart G, Zechner R, Mayer B (2001). Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation 104: 3097-3102.
  • Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP (2007). Relationship between central sympathetic drive and magnetic resonance imagingdetermined left ventricular mass in essential hypertension. Circulation 115: 1999-2005.
  • Cannino G, Ferruggia E, Rinaldi AM (2009). Proteins participating to the post-transcriptional regulation of the mitochondrial cytochrome c oxidase subunit IV via elements located in the 3′ UTR. Mitochondrion 9: 471-480.
  • Chen X, Jhee KH, Kruger WD (2004). Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082-52086.
  • Collomp K, Ahmaidi S, Audran M, Chanal JL, Prefaut C (1991). Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sport Med 12: 439- 443.
  • Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM (2006). Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. P Nat Acad Sci USA 103: 17985-17990.
  • Daly M, Farmer J, Levy G (1971). Comparison of the bronchodilator and cardiovascular actions of salbutamol, isoprenaline and orciprenaline in guinea‐pigs and dogs. Brit J Pharmacol 43: 624-638.
  • Flanagan ET, Buckley MM, Aherne CM, Lainis F, Sattar M, Johns EJ (2008). Impact of cardiac hypertrophy on arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity in anaesthetized rats. Exp Physiol 93: 1058-1064.
  • Gross G, Hanft G, Rugevics C (1988). 5-Methyl-urapidil discriminates between subtypes of the α1-adrenoceptor. Eur J Pharmacol 151: 333-335.
  • Guimarães S, Moura D (2001). Vascular adrenoceptors: an update. Pharmacol Rev 53: 319-356.
  • Han JL, Zhang YY, Lu ZZ, Mao JM, Chen MZ, Han QD (2003). Functional-adrenergic receptor subtypes in human right gastroepiploic artery. Acta Pharmacol Sin 24: 327-331.
  • Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, von Knethen A, Beck M, Hemeida RAM, El-Moselhy MAM, Hamada FMA et al. (2012). Platelet-derived growth factor-BB induces cystathionine γ-lyase expression in rat mesangial cells via a redox-dependent mechanism. Brit J Pharmacol 166: 2231- 2242.
  • Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo R (1995). International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev 47: 267-270.
  • Hosoki R, Matsuki N, Kimura H (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Bioph Res Co 237: 527-531.
  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. P Nat Acad Sci USA 84: 9265-9269.
  • Khan MAH, Sattar MA, Abdullah NA, Johns EJ (2008). α1B‐ Adrenoceptors mediate adrenergically‐induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin 29: 193-203.
  • Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K, Block K, Gorin Y (2013). Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin. II. Role of mitochondrial reactive oxygen species. J Biol Chem 288: 28668-28686.
  • Leenen FH, White R, Yuan B (2001). Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac reninangiotensin system. Am J Physiol-Heart Circ Physiol 281: H2410-H2416.
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408.
  • Moncada S, Palmer R, Higgs E (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109- 142.
  • Nicholson CK, Calvert JW (2010). Hydrogen sulfide and ischemia– reperfusion injury. Pharmacol Res 62: 289-297.
  • Ohashi Y, Kawashima SI, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M (1998). Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102: 2061.
  • Ozaki M, Kawashima S, Yamashita T, Hirase T, Ohashi Y, Inoue N, Hirata KI, Yokoyama M (2002). Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion. Circ J 66: 851-856.
  • Roman RJ, Mattson DL, Cowley AW Jr (2001). Measurement of regional blood flow in the kidney using laser-Doppler flowmetry. Methods Mol Med 51: 407-426.
  • Salomonsson M, Brännström K, Arendshorst WJ (2000). α1- Adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies. Am J Physiol-Ren Physiol 278: F138-F147.
  • Sántha P, Pákáski M, Fazekas O, Szucs S, Fodor E, Kálmán J Jr, Kálmán S, Szabó G, Janka Z, Kálmán J (2012). Acute and chronic stress induced changes in gene transcriptions related to Alzheimer’s disease. Ideggyogyaszati Szemle 65: 195-200 (in Hungarian with abstract in English).
  • Sattar MA, Johns EJ (1994a). Evidence for an alpha 1-adrenoceptor subtype mediating adrenergic vasoconstriction in Wistar normotensive and stroke-prone spontaneously hypertensive rat kidney. J Cardiovasc Pharmacol 23: 232-239.
  • Sattar MA, Johns EJ (1994b). Alpha 1-adrenoceptor subtypes mediating adrenergic vasoconstriction in kidney of twokidney, one-clip Goldblatt and deoxycorticosterone acetatesalt hypertensive rats. J Cardiovasc Pharmacol 24: 420-428.
  • Sen S, Tarazi RC, Khairallah PA, Bumpus FM (1974). Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 35: 775-781.
  • Sun CL, Hanig J (1983). Vascular reactivity to adrenergic agents and neuronal and vascular catecholamine levels in spontaneously hypertensive rats. Pharmacology 27: 319-324.
  • Tran LT, MacLeod KM, McNeill JH (2009). Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Mol Cell Biochem 330: 219-228.
  • Villalobos-Molina R, Ibarra M (1996). α1 -Adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the α1D, α 1A sub subtypes. Eur J Pharmacol 298: 257-263.
  • Villalobos-Molina R, López-Guerrero JJ, Ibarra M (1997). α1D and α1A adrenoceptors mediate contraction in rat renal artery. Eur J Pharmacol 322: 225-227.
  • Wang R (2002). Two’s company, three’s a crowd: can H2 S be the third endogenous gaseous transmitter? FASEB J 16: 1792-1798.
  • Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR (2002). Nitric oxide regulates local arterial distensibility in vivo. Circulation 105: 213-217.
  • Xu S, Zhou X, Yuan D, Xu Y, He P (2013). Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules. Am J Physiol-Heart Circ Physiol 305: H1484-H1493.
  • Yan H, Du J, Tang C (2004). The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Phys Res Co 313: 22-27.
  • Zhao W, Zhang J, Lu Y, Wang R (2001). The vasorelaxant effect of H2 S as a novel endogenous gaseous KATP channel opener. EMBO J 20: 6008-6016.
  • Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X (2010). Glucocorticoids suppress cystathionine gamma-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell Mol Life Sci 67: 1119-1132.