Cytotoxicity and antibiofilm activity of SiO2/cellulose derivative hybrid materials containing silver nanoparticles

Cytotoxicity and antibiofilm activity of SiO2/cellulose derivative hybrid materials containing silver nanoparticles

Hybrid materials based on tetraethyl orthosilicate (TEOS), hydroxypropyl cellulose (HPC), or hydroxypropyl methyl cellulose (HPMC) with silver nanoparticles were synthesized. They were analyzed and characterized using differential thermal analysis and thermogravimetry, atomic force microscopy, and static contact angle measurements. It was experimentally demonstrated that the silver-doped hybrid materials have pronounced antibacterial behavior by studying the reduction of Pseudomonas aeruginosa PAO1 biofilm formation on the tested materials. The results revealed biofilm reduction of 35.7% and 30% by SiO2/HPC/2.5% Ag and SiO2/HPMC/2.5% Ag hybrid materials, respectively, compared to the control. Cytotoxicity of examined materials and actin cytoskeleton organization of fibroblasts seeded on the materials was studied as a function of material properties as the type of surface functional groups and silver content. The obtained hybrid materials with low silver content proved efficient in tissue engineering applications since they showed good antibacterial and noncytotoxic properties for eukaryotic cells.

___

  • Angelova Ts, Rangelova N, Dineva H, Georgieva N, Müller R (2014). Synthesis, characterization and antibacterial assessment of SiO2 - hydroxypropylmethyl cellulose hybrid materials with embedded silver nanoparticles. J Biotechnol Biotechnol Equip 28: 747-752.
  • Angelova Ts, Rangelova N, Yuryev R, Georgieva N, Müller R (2012). Antibacterial activity of SiO2 /hydroxypropyl cellulose hybrid materials containing silver nano particles. Mater Sci Eng C 32: 1241-1246.
  • Asharani PV, Hande MP, Valiyaveettil S (2009). Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10: 65-79.
  • Bijtenhoorn P, Mayerhofer H, Müller-Dieckman J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E et al. (2011). A novel metagenomic short-chain dehydrogenase/ reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegance. PLoS One 6: e26278.
  • Campoccia D, Montanaro L, Arciola CR (2013). A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials 34: 8533-8554.
  • Castanon GA, Martinez NN, Gutierrez FM, Mendoza JR, Ruiz F (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10: 1343-1348.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, Sakthi Kumar D (2011). Polymeric scaffolds in tissue engineering application: a review. Inter J Polym Sci 2011: 290602.
  • Grunlan JC, Choi JK, Lin A (2005). Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromol 6: 49-53.
  • Hachem RY, Wright KC, Zermeno A, Bodey GP, Raad II (2003). Evaluation of the silver iontophoretic catheter in an animal model. Biomaterials 24: 3619-3622.
  • Hernandez-Sierra JF, Ruiz F, Cruz Pena DC, Martinez-Gutierrez F, Martinez AE, de Jess Pozos Guillon A, Tapia-Perez JH, Castanon GM (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med 4: 234-240.
  • Holt KB, Bard AJ (2005). Interaction of silver ions with the respiratory chain of E. coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochem 44: 13214-13223.
  • Ip M, Lui SL, Poon VK, Lung I, Burd A (2006). Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55: 59-63.
  • Jeon HJ, Yi SC, Oh SG (2003). Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24: 4921-4928.
  • Jones C, Hoek E (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12: 1531-1551.
  • Kamitakahara H, Yoshinaga A, Aono H, Nakatsubo F, Klemm D, Burchard W (2008). New approach to unravel the structure– property relationship of methylcellulose. Cellulose 15: 797-801.
  • Lee S, Lee J, Kim K, Sim S, Gu M, Yi J, Lee J (2009). Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotech Bioproc Eng 14: 490-495.
  • Li S, Liu M (2003). Synthesis and conductivity of proton-electrolyte membranes based on hybrid inorganic–organic copolymers. Electrochim Acta 48: 4271-4276.
  • Liu Z, Deng X, Wang M, Chen J, Zhang A, Gu Z, Zhao C (2009). BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility. J Biomater Sci Polym Ed 20: 377-397.
  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012). An investigation on the antibacterial, cytotoxic and antibiofilm efficacy of starch-stabilized silver nanoparticles. NanomedNanotechnol 8: 916-924.
  • Multanen M, Talja M, Hallanvuo S, Siitonen A, Valimaa T, Tammela TL, Seppala J, Tormala P (2000). Bacterial adherence to silver nitrate coated poly-L-lactic acid urological stents in vitro. Urol Res 28: 327-331.
  • Rangelova N, Radev L, Nenkova S, Salvado IM, Fernandes MH, Herzog M (2011). Methylcellulose/SiO2 hybrids: sol-gel preparation and characterization by XRD, FTIR and AFM. Cent Eur J Chem 9: 112-118.
  • Rangelova N, Aleksandrov L, Angelova Ts, Georgieva N, Müller R (2014). Preparation and characterization of SiO2 /CMC/Ag hybrids with antibacterial properties. Carbohydr Polym 101: 1166-1175.
  • Rhim JW, Hong SI, Park HM, Ng PK (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54: 5814-5822.
  • Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR (2011). An antibacterial coating based on a polymer/ sol-gel hybrid matrix loaded with silver nanoparticles. Nanosc Res Lett 6: 305-311.
  • Sanchez C, Julián B, Belleville Ph, Popall M (2005). Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15: 3559-3592.
  • Sintubin L, Gusseme B, van der Meeren P, Pycke BF, Verstraete W, Boon N (2011). The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91: 153-162.
  • Tatar P, Kiraz N, Asilturk M, Sayılkan F, Sayılkan H, Arpac E (2007). Antibacterial thin films on glass substrate by sol–gel process. J Inorg Organomet Polym Mater 17: 525-533.
  • Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chin JF, Tam PK (2007). Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2: 129-136.
  • Velazquez-Velazquez JL, Santos-Flores A, Araujo-Melendez J, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, MartinezCastanon G, Martinez-Gutierrez F (2015). Anti-biofilm and cytotoxicity of impregnated dressings with silver nanoparticles. Mater Sci Eng C 49: 604-611.
  • Vogler EA (1998). Structure and reactivity of water at biomaterial surfaces. Adv Coll Int Sci 74: 69-117.
  • Xu F, Piett C, Farkas S, Qazzazand M, Syed N (2013). Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Molecul Brain 6: 29-43.
  • Yano S, Iwata K, Kurita K (1998). Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater Sci Eng C 6: 75-90.
  • Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2006). Preparation and antibacterial effects of PVA–PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103: 125-133.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK