Phylostat: a web-based tool to analyze paralogous clade divergence in phylogenetic trees

Phylostat: a web-based tool to analyze paralogous clade divergence in phylogenetic trees

Phylogenetic trees are useful tools to infer evolutionary relationships between genetic entities. Phylogenetics enables not only evolution-based gene clustering but also the assignment of gene duplication and deletion events to the nodes when coupled with statistical approaches such as bootstrapping. However, extensive gene duplication and deletion events bring along a challenge in interpreting phylogenetic trees and require manual inference. In particular, there has been no robust method of determining whether one of the paralog clades systematically shows higher divergence following the gene duplication event as a sign of functional divergence. Here, we provide Phylostat, a graphical user interface that enables clade divergence analysis, visually and statistically. Phylostat is a web-based tool built on phylo.io to allow comparative clade divergence analysis, which is available at https://phylostat.adebalilab.org under an MIT open-source licence.

___

  • Adebali O, Reznik AO, Ory DS, Zhulin IB (2016). Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations. Genetics in Medicine 18: 1029-1036.
  • Bartha I, di Iulio J, Venter JC, Telenti A (2018). Human gene essentiality. Nature Reviews Genetics 19: 51-62.
  • Dalquen DA, Anisimova M, Gonnet GH, Dessimoz C (2012). ALF—a simulation framework for genome evolution. Molecular Biology and Evolution 29: 1115-1123.
  • Derrick B, Russ B, Toher D, White P (2017). Test statistics for the comparison of means for two samples that include both paired and independent observations. Journal of Modern Applied Statistical Methods 16: 9.
  • Gabaldon T, Koonin EV (2013). Functional and evolutionary implications of gene orthology. Nature Reviews Genetics 14: 360-366.
  • He X, Zhang J (2005). Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169: 1157-1164.
  • Horiike T (2016). An introduction to molecular phylogenetic analysis. Robotics and Autonomous Systems 4: 36-45.
  • Huerta-Cepas J, Serra F, Bork P (2016). ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution 33: 1635-1638.
  • Huson DH, Scornavacca C (2012). Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks. Systematic Biology 61: 1061-1067.
  • Jovanovic N, Mikheyev AS (2019). Interactive web-based visualization and sharing of phylogenetic trees using phylogeny.IO. Nucleic Acids Research 47: W266-W269.
  • Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453-4455.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35: 1547-1549.
  • Lafond M, Meghdari Miardan M, Sankoff D (2018). Accurate prediction of orthologs in the presence of divergence after duplication. Bioinformatics 34: i366-i375.
  • Letunic I, Bork P (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127-128.
  • Long M, Betran E, Thornton K, Wang W (2003). The origin of new genes: glimpses from the young and old. Nature Reviews Genetics 4: 865-875.
  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997). Evolution of genetic redundancy. Nature 388: 167-171.
  • Ogden TH, Rosenberg MS (2006). Multiple sequence alignment accuracy and phylogenetic inference. Systematic Biology 55: 314-328.
  • Ohno S (1970). Evolution by gene duplication. Allen & Unwin; Springer-Verlag, London, New York.
  • Robinson O, Dylus D, Dessimoz C (2016). Phylo.io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web. Molecular Biology and Evolution 33: 2163-2166.
  • Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S et al. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020: 1-21.
  • Swenson KM, El-Mabrouk N (2012). Gene trees and species trees: irreconcilable differences. BMC Bioinformatics 13 Suppl 19: S15.
  • Vanier MT (2010). Niemann-Pick disease type C. Orphanet Journal of Rare Diseases 5: 16.
  • Vaughan TG (2017). IcyTree: rapid browser-based visualization for phylogenetic trees and networks. Bioinformatics 33: 2392- 2394.