A cytoplasmic escapee: desmin is going nuclear

A cytoplasmic escapee: desmin is going nuclear

It has been a long time since researchers have focused on the cytoskeletal proteins’ unconventional functions in the nucleus. Subcellular localization of a protein not only affects its functions but also determines the accessibility for cellular processes. Desmin is a muscle-specific, cytoplasmic intermediate filament protein, the cytoplasmic roles of which are defined. Yet, there is some evidence pointing out nuclear functions for desmin. In silico and wet lab analysis shows that desmin can enter and function in the nucleus. Furthermore, the candidate nuclear partners of desmin support the notion that desmin can serve as a transcriptional regulator inside the nucleus. Uncovering the nuclear functions and partners of desmin will provide a new insight into the biological significance of desmin.

___

  • Aebi U, Chon J, Buble L, Geraca L (1986).. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323 (9). doi: 10.1038/323560a0
  • Agnetti G, Herrmann H, Cohen S (2021). New roles for desmin in the maintenance of muscle homeostasis. FEBS Journal 1–16. doi: 10.1111/febs.15864.
  • Al-Haboubi T, Shumaker DK, Köser J, Wehnert M, Fahrenkrog B (2011). Distinct Association of the Nuclear Pore Protein Nup153 with A- and B-type Lamins. Nucleus 2 (5): 1–10. doi: 10.4161/nucl.2.5.17913
  • Andrés V, González JM (2009). Role of A-type lamins in signaling , transcription , and chromatin organization. Journal of Cell Biology 187 (7): 945–957. doi: 10.1083/jcb.200904124
  • Bergman JEH, Veenstra-Knol HE, van Essen AJ, van Ravenswaaij CMA, den Dunnen WFA et al. (2007). Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. European Journal of Medical Genetics 50 (5): 355–366. doi: 10.1016/j.ejmg.2007.06.003
  • Brodehl A, Gaertner-Rommel A, Milting H (2018). Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophysical Reviews 10 (4): 983–1006. doi: 10.1007/ s12551-018-0429-0
  • Brunet S, Sardon T, Zimmerman T, Wittmann T, Pepperkok R et al. (2004). Characterization of the TPX2 Domains Involved in Microtubule Nucleation and Spindle Assembly in Xenopus nucleation around chromatin and functions in a network of other molecules , some of which also are regulated by. Molecular Biology of the Cell 15 (December): 5318–5328. doi: 10.1091/mbc.E04
  • Cabet E, Batonnet-Pichon S, Delort F, Gausserès B, Vicart P et al. (2015). Antioxidant treatment and induction of autophagy cooperate to reduce desmin aggregation in a cellular model of desminopathy. PLoS ONE 10 (9): 1–26. doi: 10.1371/journal. pone.0137009
  • Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G Tsikitis M (2015). Desmin related disease: A matter of cell survival failure. Current Opinion in Cell Biology 32 (Dcm): 113–120. doi: 10.1007/s11065-015-9294-9.Functional
  • Capetanaki Y, Milner DJ Weitzer G (1997). Desmin in muscle formation and maintenance : knockouts and consequences. Cell Structure and Function 22 (1): 103–116. doi: 10.1247/ csf.22.103
  • Çetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N et al. (2013). A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: Distinct histopathological outcomes compared with desminopathies. Journal of Medical Genetics 50: 437–443. doi: 10.1136/jmedgenet-2012-101487
  • Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Brazilian Journal of Medical and Biological Research 37 (12): 1819–1830.
  • La Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K et al. (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Engineering, Design and Selection 17 (6): 527–536. doi: 10.1093/protein/gzh062
  • Escriou V, Carrière M, Scherman D, Wils P. (2003). NLS bioconjugates for targeting therapeutic genes to the nucleus. Advanced Drug Delivery Reviews 55 (2): 295–306. doi: 10.1016/S0169- 409X(02)00184-9
  • Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H et al. (2016). Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biology Open 5 (2): 140– 153. doi: 10.1242/bio.014993
  • Fuchs E, Weber K (1994). Intermediate Filaments: Structure, Dynamics, Function and Disease. Annual Review of Biochemistry 63: 345–382.
  • Geisler N, Weber K (1988). Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain. The EMBO Journal 7 (1): 15–20. doi: 10.1002/j.1460-2075.1988. tb02778.x
  • Georgatos SD, Webert K, Geisler N, Blobel G (1987). Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved sitespecificity in intermediate filament-membrane Interactions. Proceedings of the National Academy of Sciences of the United States of America 84: 6780–6784.
  • Gonzalez JM, Navarro-Puche A, Casar B, Crespo P, Andres V (2008). Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. Journal of Cell Biology 183 (4): 653–666. doi: 10.1083/jcb.200805049
  • Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P (1998). DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. Journal of Cell Science 111 (24): 3573–84.
  • Hesse M, Magin TM, Weber K (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: Novel keratin genes and a suprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of Cell Science 114 (14): 2569–2575.
  • Hnia K, Ramspacher C, Vermot J, Laporte J (2015). Desmin in muscle and associated diseases: beyond the structural function. Cell and Tissue Research 360 (3): 591–608. doi: 10.1007/s00441- 014-2016-4
  • Hobbs RP, Depianto DJ, Jacob JT, Han MC, Chung BM et al. (2015). Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nature Genetics 47 (8): 933–938. doi: 10.1038/ng.3355
  • Hobbs RP, Jacob JT, Coulombe PA (2016). Keratins Are Going Nuclear. Developmental Cell 38 (3): 227–233. doi: 10.1016/j. devcel.2016.07.022
  • Höllrigl A, Puz S, Al-Dubai H, Kim JU, Capetanaki Y et al. (2002). Amino-terminally truncated desmin rescues fusion of des −/− myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Letters 523 (1–3): 229–233. doi: 10.1016/s0014-5793(02)02995-2
  • Höllrigl A, Hofner M, Stary M, Weitzer G (2007). Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 75: 616– 626. doi: 10.1111/j.1432-0436.2007.00163.x
  • Holtz D, Tanaka RA, Hartwig J, McKeon F (1989). The CaaX motif of lamin A functions in conjunction with the nuclear localization signal to target assembly to the nuclear envelope. Cell 59 (6): 969–977. doi: 10.1016/0092-8674(89)90753-8.
  • Hong D, Wang Z, Zhang W, Xi J, Lu J et al. (2011). A series of Chinese patients with desminopathy associated with six novel and one reported mutations in the desmin gene. Neuropathology and Applied Neurobiology 37 (3): 257–270. doi: 10.1111/j.1365- 2990.2010.01112.x
  • Hoover B, Reed MN, Su J, Penrod RD, Kotilinek LA et al. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68 (6). doi: 10.1038/jid.2014.371
  • Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V et al. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research 43 (Database Issue). doi: 10.1093/nar/gku1267
  • Hung MC, Link W (2011). Protein localization in disease and therapy. Journal of Cell Science 124 (20): 3381–3392. doi: 10.1242/jcs.089110
  • Inagaki M, Gonda Y, Matsuyama M, Nishizawa K, Nishi Y et al. (1988). Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. Journal of Biological Chemistry 263 (12): 5970–5978. doi: 10.1016/s0021-9258(18)60661-1
  • Kaiser FJ, Brega P, Raff ML, Byers PH, Gallati S et al. (2004). Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. European Journal of Human Genetics 12 (2): 121–126. doi: 10.1038/sj.ejhg.5201094
  • Kamei H (1986). A Monoclonal Antibody to Chicken Gizzard Desmin that Recognizes Intermediate Filaments and Nuclear Granules in BHK21 / C13 Intermediate filaments. Cell Structure and Function 11: 367–377.
  • Kim YH, Han ME, Oh SO (2017). The molecular mechanism for nuclear transport and its application. Anatomy & Cell Biology 50 (2): 77. doi: 10.5115/acb.2017.50.2.77
  • Kong KY, Kedes L (2004). Cytoplasmic nuclear transfer of the actincapping protein tropomodulin. Journal of Biological Chemistry 279 (29): 30856–30864. doi: 10.1074/jbc.M302845200
  • Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009). Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. PNAS 106 (25): 1–6. doi: 10.1073/pnas.0900604106
  • Kumeta M, Yoshimura SH, Harata M, Takeyasu K (2010). Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. Journal of Cell Science 123 (7): 1020–1030. doi: 10.1242/jcs.059568
  • Kumeta M, Yoshimura SH, Hejna J, Takeyasu K (2012). Nucleocytoplasmic shuttling of cytoskeletal proteins: Molecular mechanism and biological significance. International Journal of Cell Biology 2012. doi: 10.1155/2012/494902
  • Kural-Mangıt E, Dinçer PR (2021). Physical evidence on desmin– lamin B interaction. Cytoskeleton (December 2020): 1–4. doi: 10.1002/cm.21651
  • Kural E (2017). Desmin ve Lamin B Etkileşimin Zebra Balığında Araştırılması. Hacettepe Üniversitesi. Ankara. Türkiye.
  • Langer HT, Mossakowski AA, Willis BJ, Grimsrud KN, Wood JA et al. (2020). Generation of desminopathy in rats using CRISPRCas9. Journal of Cachexia Sarcopenia and Muscle 11 (5): 1364– 1376. doi: 10.1002/jcsm.12619
  • Lazarides E (1980). Intermediate Filaments as Mechanical Integrators of Cellular Space. Nature 283: 249–256. doi: 10.1038/283249a0
  • Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR et al. (1994). Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators myoD and myogenin. The Journal of Cell Biology 124 (5): 827–841. doi: 10.1083/ jcb.124.5.827
  • Liu B, Wang J, Chan KM, Tjia WM, Deng W et al. (2005). Genomic instability in laminopathy-based premature aging. Nature Medicine 11 (7): 780–785. doi: 10.1038/nm1266
  • Lockard VG, Bloom S (1993). Trans-cellular desmin-lamin B intermediate filament network in cardiac myocytes. Journal of Molecular and Cellular Cardiology 25: 303–309.
  • Loewinger L, McKeon F (1988). Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. The EMBO Journal 7 (8): 2301–2309. doi: 10.1002/j.1460- 2075.1988.tb03073.x
  • Mahipal A, Malafa M (2016). Importins and exportins as therapeutic targets in cancer. Pharmacology and Therapeutics 164: 135– 143. doi: 10.1016/j.pharmthera.2016.03.020
  • Majewski L, Nowak J, Sobczak M, Karatsai O, Havrylov S et al. (2018). Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins. Nucleus doi: 10.1080/19491034.2017.1421881
  • Malhas AN, Lee CF. Vaux DJ (2009). Lamin B1 controls oxidative stress responses via Oct-1. Journal of Cell Biology 184 (1): 45–55. doi: 10.1083/jcb.200804155
  • Manju K, Muralikrishna B. Parnaik VK (2006). Expression of diseasecausing lamin A mutants impairs the formation of DNA repair foci. Journal of Cell Science 2704–2714. doi: 10.1242/jcs.03009
  • Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N, Capetanaki Y (2008). A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Z‐disc localization. The FASEB Journal 22 (9): 3318–3327. doi: 10.1096/fj.07-088724
  • Höllrigl A, Puz S, Al-Dubai H, Kim JU, Capetanaki Y et al. (2002). Amino-terminally truncated desmin rescues fusion of des −/− myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Letters 523 (1–3): 229–233. doi: 10.1016/s0014-5793(02)02995-2
  • Höllrigl A, Hofner M, Stary M, Weitzer G (2007). Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 75: 616– 626. doi: 10.1111/j.1432-0436.2007.00163.x
  • Holtz D, Tanaka RA, Hartwig J, McKeon F (1989). The CaaX motif of lamin A functions in conjunction with the nuclear localization signal to target assembly to the nuclear envelope. Cell 59 (6): 969–977. doi: 10.1016/0092-8674(89)90753-8.
  • Hong D, Wang Z, Zhang W, Xi J, Lu J et al. (2011). A series of Chinese patients with desminopathy associated with six novel and one reported mutations in the desmin gene. Neuropathology and Applied Neurobiology 37 (3): 257–270. doi: 10.1111/j.1365- 2990.2010.01112.x
  • Hoover B, Reed MN, Su J, Penrod RD, Kotilinek LA et al. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68 (6). doi: 10.1038/jid.2014.371
  • Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V et al. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research 43 (Database Issue). doi: 10.1093/nar/gku1267
  • Hung MC, Link W (2011). Protein localization in disease and therapy. Journal of Cell Science 124 (20): 3381–3392. doi: 10.1242/jcs.089110
  • Inagaki M, Gonda Y, Matsuyama M, Nishizawa K, Nishi Y et al. (1988). Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. Journal of Biological Chemistry 263 (12): 5970–5978. doi: 10.1016/s0021-9258(18)60661-1
  • Kaiser FJ, Brega P, Raff ML, Byers PH, Gallati S et al. (2004). Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. European Journal of Human Genetics 12 (2): 121–126. doi: 10.1038/sj.ejhg.5201094
  • Kamei H (1986). A Monoclonal Antibody to Chicken Gizzard Desmin that Recognizes Intermediate Filaments and Nuclear Granules in BHK21 / C13 Intermediate filaments. Cell Structure and Function 11: 367–377.
  • Kim YH, Han ME, Oh SO (2017). The molecular mechanism for nuclear transport and its application. Anatomy & Cell Biology 50 (2): 77. doi: 10.5115/acb.2017.50.2.77
  • Kong KY, Kedes L (2004). Cytoplasmic nuclear transfer of the actincapping protein tropomodulin. Journal of Biological Chemistry 279 (29): 30856–30864. doi: 10.1074/jbc.M302845200
  • Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009). Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. PNAS 106 (25): 1–6. doi: 10.1073/pnas.0900604106
  • Kumeta M, Yoshimura SH, Harata M, Takeyasu K (2010). Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. Journal of Cell Science 123 (7): 1020–1030. doi: 10.1242/jcs.059568
  • Kumeta M, Yoshimura SH, Hejna J, Takeyasu K (2012). Nucleocytoplasmic shuttling of cytoskeletal proteins: Molecular mechanism and biological significance. International Journal of Cell Biology 2012. doi: 10.1155/2012/494902
  • Kural-Mangıt E, Dinçer PR (2021). Physical evidence on desmin– lamin B interaction. Cytoskeleton (December 2020): 1–4. doi: 10.1002/cm.21651
  • Kural E (2017). Desmin ve Lamin B Etkileşimin Zebra Balığında Araştırılması. Hacettepe Üniversitesi. Ankara. Türkiye.
  • Langer HT, Mossakowski AA, Willis BJ, Grimsrud KN, Wood JA et al. (2020). Generation of desminopathy in rats using CRISPRCas9. Journal of Cachexia Sarcopenia and Muscle 11 (5): 1364– 1376. doi: 10.1002/jcsm.12619
  • Lazarides E (1980). Intermediate Filaments as Mechanical Integrators of Cellular Space. Nature 283: 249–256. doi: 10.1038/283249a0
  • Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR et al. (1994). Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators myoD and myogenin. The Journal of Cell Biology 124 (5): 827–841. doi: 10.1083/ jcb.124.5.827
  • Liu B, Wang J, Chan KM, Tjia WM, Deng W et al. (2005). Genomic instability in laminopathy-based premature aging. Nature Medicine 11 (7): 780–785. doi: 10.1038/nm1266
  • Lockard VG, Bloom S (1993). Trans-cellular desmin-lamin B intermediate filament network in cardiac myocytes. Journal of Molecular and Cellular Cardiology 25: 303–309.
  • Loewinger L, McKeon F (1988). Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. The EMBO Journal 7 (8): 2301–2309. doi: 10.1002/j.1460- 2075.1988.tb03073.x
  • Mahipal A, Malafa M (2016). Importins and exportins as therapeutic targets in cancer. Pharmacology and Therapeutics 164: 135– 143. doi: 10.1016/j.pharmthera.2016.03.020
  • Majewski L, Nowak J, Sobczak M, Karatsai O, Havrylov S et al. (2018). Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins. Nucleus doi: 10.1080/19491034.2017.1421881
  • Malhas AN, Lee CF. Vaux DJ (2009). Lamin B1 controls oxidative stress responses via Oct-1. Journal of Cell Biology 184 (1): 45–55. doi: 10.1083/jcb.200804155
  • Manju K, Muralikrishna B. Parnaik VK (2006). Expression of diseasecausing lamin A mutants impairs the formation of DNA repair foci. Journal of Cell Science 2704–2714. doi: 10.1242/jcs.03009
  • Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N, Capetanaki Y (2008). A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Z‐disc localization. The FASEB Journal 22 (9): 3318–3327. doi: 10.1096/fj.07-088724
  • McLane LM, Corbett AH (2009). Nuclear localization signals and human disease. IUBMB Life 61 (7): 697–706. doi: 10.1002/ iub.194
  • Mendes HF, Van Der Spuy J, Chapple JP, Cheetham ME (2005). Mechanisms of cell death in rhodopsin retinitis pigmentosa: Implications for therapy. Trends in Molecular Medicine 11 (4): 177–185. doi: 10.1016/j.molmed.2005.02.007
  • Mizutani A, Matsuzaki A, Momoi MY, Fujita E, Tanabe Y et al. (2007) Intracellular distribution of a speech/language disorder associated FOXP2 mutant. Biochemical and Biophysical Research Communications 353 (4): 869–874. doi: 10.1016/j. bbrc.2006.12.130
  • Murre C, Schonleber P, Baltimore D (1989). A New DNA Binding and Dimerization Motif inlmmunoglobulin Enhancer Binding, daughterless, MyoD, and myc Proteins. Cell 56: 777–783.
  • Oshima RG (2007). Intermediate filaments: A historical perspective. Experimental Cell Research 313 (10): 1981–1994. doi: 10.1016/j.yexcr.2007.04.007
  • Peter A, Stick R (2015). Evolutionary aspects in intermediate filament proteins. Current Opinion in Cell Biology 32: 48–55. doi: 10.1016/j.ceb.2014.12.009
  • Pica EC, Kathirvel P, Pramono ZAD, Lai PS, Yee WC (2008). Characterization of a novel S13F desmin mutation associated with desmin myopathy and heart block in a Chinese family. Neuromuscular Disorders 18 (2): 178–182. doi: 10.1016/j. nmd.2007.09.011
  • Qiu H, Zhao S, Xu X, Yerle M, Liu B (2008). Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene. Journal of Genetics and Genomics 35 (5): 257–260. doi: 10.1016/S1673-8527(08)60036- 3
  • Rogers MA, Winter H, Langbein L, Bleiler R, Schweizer J (2004). The human type I keratin gene family: Characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain, Differentiation 72 (9–10): 527–540. doi: 10.1111/j.1432-0436.2004.07209006.x
  • Rogers MA, Edler L, Winter H, Langbein L, Beckmann I et al. (2005). Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. Journal of Investigative Dermatology 124 (3): 536–544. doi: 10.1111/j.0022- 202X.2004.23530.x
  • Sabherwal N, Schneider KU, Blaschke RJ, Marchini A, Rappold G (2004). Impairment of SHOX nuclear localization as a cause for Léri-Weill syndrome. Journal of Cell Science 117 (14): 3041– 3048. doi: 10.1242/jcs.01152
  • Sharma S, Mücke N, Katus HA, Herrmann H, Bär H (2009). Disease mutations in the ‘head’ domain of the extra-sarcomeric protein desmin distinctly alter its assembly and network-forming properties. Journal of Molecular Medicine 87 (12): 1207–1219. doi: 10.1007/s00109-009-0521-9
  • Shoubridge C, Tan M, Fullston T, Cloosterman D, Coman D et al. (2010). Mutations in the nuclear localization sequence of the Aristaless related homeobox; Sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division. Patho Genetics 3 (1): 1–15. doi: 10.1186/1755-8417-3-1
  • Snider NT, Omary MB (2014). Post-translational Modifications of Intermediate Filament Proteins: Mechanisms and Functions. Nature Reviews. Molecular Cell Biology 15 (3): 163–177. doi: 10.1016/j.biotechadv.2011.08.021.Secreted
  • Sridharan D, Brown M, Lambert C, McMahon L, Lambert M (2003). Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. Journal of Cell Science 116 (5): 823–835. doi: 10.1242/jcs.00294
  • Stroud MJ, Banerjee I, Veevers J, Chen J (2014). Linker of Nucleoskeleton and Cytoskeleton Complex Proteins in Cardiac Structure. Function and Disease Circulation Research 114: 538–48. doi: 10.1161/CIRCRESAHA.114.301236
  • Szeverenyi I, Cassidy AJ, Cheuk WC, Lee BTK, Common JEA et al. (2008) The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation 29 (3): 351–360. doi: 10.1002/humu.20652
  • Tan X, Rotllant J, Li H, Deyne PD, Du SJ (2006). SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. PNAS 103 (8): 2713– 2718.
  • Taylor MRG, Slavov D, Ku L, Di Lenarda A, Sinagra G et al. (2007). Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115 (10): 1244–1251. doi:10.1161/ CIRCULATIONAHA.106.646778
  • van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJH, Wiesfeld ACP et al. (2009). Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 6 (11): 1574–1583. doi: 10.1016/j.hrthm.2009.07.041
  • Tixier V, Bataille L, Etard C, Jagla T, Weger M et al. (2013). Glycolysis supports embryonic muscle growth by promoting myoblast fusion. Proceedings of the National Academy of Sciences of the United States of America 110 (47): 18982–18987. doi: 10.1073/ pnas.1301262110
  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB (2005). Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments. Trends in Cell Biology 15 (11): 608–617. doi: 10.1016/j.tcb.2005.09.004
  • Tolstonog GV, Wang X, Shoeman R, Traub P (2000). Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments. DNA and Cell Biology 19 (11): 647–677. doi: 10.1089/10445490050199054
  • Tolstonog GV, Li G, Shoeman RL, Traub P (2005). Interaction In Vitro of Type III Intermediate Filament Proteins with Higher Order Structures of Single-Stranded DNA, Particularly with G-Quadruplex DNA. DNA and Cell Biology 24 (2): 85–110. doi: 10.1089/dna.2005.24.85
  • Traub P, Shoeman RL (1994). Intermediate Filament Proteins: Cytoskeletal Elements with Gene-Regulatory Function?. International Review of Cytology 154: 1–103. doi: 10.1016/ S0074-7696(08)62198-1
  • Tse HF, Ho JCY, Choi SW, Lee YK, Butler AW et al. (2013). Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Human Molecular Genetics 22 (7): 1395–1403. doi: 10.1093/hmg/dds556
  • Ünsal Ş (2019). Limb - Girdle Kas Distrofisi 2R (LGMD2R)’de mekanotransdüksiyonun rolünün araştırılması. Hacettepe Üniversitesi. Ankara. Türkiye.
  • Wang Q, Tolstonog GV, Shoeman R, Traub P (2001). Sites of Nucleic Acid Binding in Type I - IV Intermediate Filament Subunit. Biochemistry 40: 10342–10349. doi: 10.1021/bi0108305
  • Weber K, Plessmann U, Ulrich W (1989). Cytoplasmic intermediate filament proteins of invertebrates are closer to nuclear lamins than are vertebrate intermediate filament proteins; sequence characterization of two muscle proteins of a nematode. EMBO Journal 8 (11): 3221–3227. doi: 10.1002/j.1460-2075.1989. tb08481.x
  • Wilson GL, Dean BS, Wang G, Dean DA (1999). Nuclear Import of Plasmid DNA in Digitonin-permeabilized Cells Requires Both Cytoplasmic Factors and Specific DNA Sequences. Journal of Biological Chemistry 274 (31): 22025–22032