Combination of classical and statistical approaches to enhance the fermentation conditions and increase the yield of Lipopeptide(s) by Pseudomonas sp. OXDC12: its partial purification and determining antifungal property

Combination of classical and statistical approaches to enhance the fermentation conditions and increase the yield of Lipopeptide(s) by Pseudomonas sp. OXDC12: its partial purification and determining antifungal property

Around 200 different lipopeptides (LPs) have been identified to date, most of which are produced via Bacillus and Pseudomonas species. The clinical nature of the lipopeptide (LP) has led to a big surge in its research. They show antimicrobial and antitumor activities due to which mass-scale production and purification of LPs are beneficial. Response surface methodology (RSM) approach has emerged as an alternative in the field of computational biology for optimizing the reaction parameters using statistical models. In the present study, Pseudomonas sp. strain OXDC12 was used for production and partial purification of LPs using Thin Layer Chromatography (TLC). The main goal of the study was to increase the overall yield of LPs by optimizing the different variables in the fermentation broth. This was achieved using a combination of one factor at a time (OFAT) and response surface methodology (RSM) approaches. OFAT technique was used to optimize the necessary parameters and was followed by the creation of statistical models (RSM) to optimize the remaining variables. Maximum mycelial growth inhibition (%) against the fungus Mucor sp. was 61.3% for LP. Overall, the combination of both OFAT and RSM helped in increasing the LPs yield by 3 folds from 367mg/L to 1169mg/L.

___

  • Alajlani M, Shiekh A, Hasnain S, Brantner A (2016). Purification of bioactive lipopeptides produced by Bacillus subtilis strain BIA. Chromatographia 79 (21): 1527-1532. doi: 10.1007/s10337- 016-3164-3
  • Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003). Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149 (1): 37-46. doi: 10.1099/mic.0.25859-0
  • Biniarz P, Coutte F, Gancel F, Łukaszewicz, M (2018). Highthroughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microbial Cell Factories 17 (1): 1-18. doi: 10.1186/s12934-018-0968-x
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1-2): 248- 254. doi: 10.1016/0003-2697(76)90527-3
  • Cao Y, Xu Z, Ling N, Yuan Y, Yang X et al. (2012). Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae 135 (2012): 32-39. doi: 10.1016/j.scienta.2011.12.002
  • Chauhan V, Kanwar SS (2021). Lipopeptide(s) associated with human microbiome as potent cancer drug. Seminars in cancer biology. 70: 128-133. doi: 10.1016/j.semcancer.2020.06.012
  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007). Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnology Progress 23 (3): 661-666. doi: 10.1021/bp0700152.
  • Das P, Mukherjee S, Sen R (2008). Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology 104 (6): 1675-1684. doi: 10.1111/j.1365-2672.2007.03701.x
  • Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016). Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatalysis and Agricultural Biotechnology 5 (2016): 38-47. doi: 10.1016/j. bcab.2015.11.006
  • Diwaniyan S, Sharma KK, Kuhad RC (2011). Laccase from an alkalitolerant basidiomycetes Crinipellis sp. RCK-1: production optimization by response surface methodology. Journal of Basic Microbiology 52 (4): 1–11. doi: 10.1002/jobm.201100018
  • Fang FR, Zhong S, Dong Y, Gong LJ (2014). Extraction and antifungal activity of a lipopeptide biosurfactant. Advanced Materials Research 936: 669-673. doi: 10.4028/www.scientific. net/AMR.936.669
  • Fonseca RR, Silva AJR, De França FP, Cardoso VL, Sérvulo EFC (2007). Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD. (editors). Applied Biochemistry and Biotechnology: ABAB Symposium. Humana Press, pp. 471-486. doi: 10.1007/978-1-60327-181-3_40
  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology 99 (11): 4597-4602. doi: 10.1016/j.biortech.2007.07.028
  • Geissler M, Oellig C, Moss K, Schwack W, Henkel M (2017). High- performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides surfactin, iturin A and fengycin in culture samples of Bacillus species. Journal of Chromatography B 1044 (2017): 214-224. doi: 10.1016/j.jchromb.2016.11.013
  • Geudens N, Martins JC (2018). Cyclic lipodepsipeptides from Pseudomonas spp.–biological swiss-army knives. Frontiers in Microbiology 1867. doi: 10.3389/fmicb.2018.01867
  • Eswari JS, Anand M, Venkateswarlu C (2016). Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization. Sadhana 41 (1): 55-65. doi: 10.1007/s12046-015- 0451-x
  • Hmidet N, Ben Ayed H, Jacques P, Nasri M (2017). Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation. BioMed Research International doi: 10.1155/2017/5893123
  • Janek T, Rodrigues LR, Gudiña EJ, Czyżnikowska Ż (2016). Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions. Colloids and Surfaces B: Biointerfaces 146: 498–506. doi: 10.1016/j.colsurfb.2016.06.055
  • Khusro A, Kaliyan BK, Al-Dhabi NA, Arasu MV, Agastian P (2016). Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI. Electronic Journal of Biotechnology 22 (2016): 16–25. doi: 10.1016/j.ejbt.2016.04.002
  • Kim TK (2017). Understanding one-way ANOVA using conceptual figures. Korean Journal of Anesthesiology 70 (1): 22. doi: 10.4097/kjae.2017.70.1.22
  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G et al. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology 186: 1084-1096. doi: 10.1128/JB.186.4.1084- 1096.2004
  • Kumar PS, Ngueagni PT (2021). A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. Journal of Hazardous Materials 407: 124827. doi: 10.1016/j.jhazmat.2020.124827
  • Lee KJ, Moreno-Betancur M, Kasza J, Marschner IC, Barnett AG et al. (2019) Biostatistics: a fundamental discipline at the core of modern health data science. The Medical Journal of Austalia 211 (10): 444. doi: 10.5694/mja2.50372
  • Maksimov IV, Singh BP, Cherepanova EA (2020). Prospects and applications of lipopeptide-producing bacteria for plant protection. Applied Biochemistry and Microbiology 56 (1): 15–28. doi: 10.1134/S0003683820010135
  • Matsui K, Kan Y, Kikuchi J, Matsushima K, Takemura M et al. (2020). Stalobacin: Discovery of novel lipopeptide antibiotics with potent antibacterial activity against multidrug-resistant bacteria. Journal of Medicinal Chemistry 63 (11): 6090-5. doi: 10.1021/acs.jmedchem.0c00295
  • Meena KR, Tandon T, Sharma A, Kanwar SS, (2018). Lipopeptide antibiotic production by Bacillus velezensis KLP2016. Journal of Applied Pharmaceutical Science 8 (3): 91-98. doi: 10.7324/ JAPS.2018.8313
  • Morikawa M, Hirata Y, Imanaka T (2000). A study on the structure– function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta–Molecular and Cell Biology of Lipids 1488 (3): 211-8. doi: 10.1016/S1388-1981(00)00124-4
  • Mukherjee D, Rooj B, Mandal U (2021). Antibacterial biosurfactants. In: Inamuddin, Ahamed MI, Prasad R (editors). Microbial Biosurfactants, Environmental and Microbial Biotechnology. Springer, Singapore, pp. 271-291. doi: 10.1007/978-981-15- 6607-3_13
  • Myers RH, Montgomery DC, Anderson-Cook CM (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
  • Nair SS (2013). Experimental investigation of multipass tig welding using response surface methodology. International Journal of Mechanical Engineering and Robotics Research 2 (3): 242–254.
  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000). Structure, production characteristics and fungal antagonism of tensin–a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain. Journal of Applied Microbiology 89 (6): 992-1001. doi: 10.1046/j.1365- 2672.2000.01201.x
  • Shruti G, Kanwar SS (2021). Optimization of growth conditions for oxalate decarboxylase production from Pseudomonas sp. OXDC12 and in vitro inhibition of calcium oxalate crystallization by oxalate decarboxylase. Current Biotechnology 10:2021. doi: 10.2174/2211550110666210726154149
  • Palvannan T, Kumar PS (2010). Production of laccase from Pleurotus florida NCIM 1243 using plackett–burman design and response surface methodology. Journal of Basic Microbiology 50 (4): 325–335. doi: 10.1002/jobm.200900333
  • Patel R, Dadida C, Sarker K, Sen DJ (2015). Sudan dyes as lipid soluble aryl-azo naphthols for microbial staining. European Journal Pharmaceutical and Medical Research 2 (3): 417-419.
  • Paul M, Nayak DP, Thatoi H (2020). Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal biosphere reserve, Odisha, using response surface methodology. Journal of Genetic Engineering and Biotechnology 18 (2020): 1-19. doi: 10.1186/s43141-020-00099-7
  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena, M (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews 34 (6): 1037-1062.
  • Rangarajan V, Dhanarajan G, Kumar R, Sen R, Mandal M (2012). Time‐ dependent dosing of Fe2+ for improved lipopeptide production by marine Bacillus megaterium. Journal of Chemical Technology & Biotechnology 87 (12): 1661-1669. doi: 10.1002/jctb.3814.
  • Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J et al. (1993). Purification of antifungal lipopeptides by reversedphase high-performance liquid chromatography. Journal of Chromatography A 639 (1): 81-85. doi: 10.1016/0021- 9673(93)83091-6
  • Rocha MVP, Souza MCM, Benedicto SCL, Bezerra MS, Macedo GR et al. (2007). Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (editors). Applied Biochemistry and Biotechnology. ABAB Symposium. Humana Press. pp 37-140.
  • Schlusselhuber M, Godard J, Sebban M, Bernay B, Garon D et al. (2020). Corrigendum: characterization of Milkisin, a novel lipopeptide with antimicrobial properties produced by Pseudomonas sp. UCMA 17988 isolated from bovine raw milk. Frontiers in Microbiology. 11: 1323. doi: 10.3389/ fmicb.2020.01323
  • Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar, J, Mandal M et al. (2010). Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. International Journal of Peptide Research and Therapeutics 16 (4): 215-222. doi: 10.1007/s10989-010-9212-1
  • Smyth T, Perfumo A, McClean S, Marchant R, Banat I (2010). Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In: Timmis KN (editors) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, pp. 3688-3704. doi: 10.1007/978-3-540-77587-4_290
  • Tagg J (1971). Assay system for bacteriocins. Applied Microbiology 21 (5): 943.
  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S et al. (2019). Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi journal of biological sciences 26 (7): 1882- 1895. doi: 10.1016/j.sjbs.2016.01.042
  • Vigneshwaran C, Vasantharaj K, Krishnanand N, Sivasubramanian V (2021). Production optimization, purification and characterization of lipopeptide biosurfactant obtained from Brevibacillus sp. AVN13. Journal of Environmental Chemical Engineering 9 (1): 104867. doi: 10.1016/j.jece.2020.104867
  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology 99 (5): 1157-1164. doi: 10.1016/j.biortech.2007.02.026
  • Yao D, Ji Z, Wang C, Qi G, Zhang L et al. (2012). Co-producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10. World Journal of Microbiology and Biotechnology 28 (3): 985-991. doi: 10.1007/s11274-011-0896-y
  • Zhao X, Han Y, Tan XQ, Wang J, Zhou ZJ (2014). Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. Journal of Microbiology 52 (4): 324-332. doi: 10.1007/s12275-014-3354-3
  • Zheng ZM, Wang TP, Wu Q (2013). Optimization of culture conditions for biosynthesis of lipopeptide by Bacillus Subtilis with starch. In: Tang X, Chen X, Dong Y, Wei X, Yang Q (editors). Applied Mechanics and Materials. Trans Tech Publications Ltd, pp. 225-229. doi: 10.4028/www.scientific.net/ AMM.291-294.225
  • Zhu Z, Zhang B, Cai Q, Ling J, Lee K et al. (2020). Fish waste based lipopeptide production and the potential application as a biodispersant for oil spill control. Front. Bioeng Biotechnol. 8: 734. doi: 10.4028/www.scientific.net/AMM.291-294.225