Oxidative Stress Upregulates the Transcription of Genes Involved in Thiamine Metabolism

Oxidative Stress Upregulates the Transcription of Genes Involved in Thiamine Metabolism

: Thiamine is a major vitamin that acts as a cofactor in energy metabolism in all organisms, as well as in lipid and aminoacid metabolisms, and is associated with many diseases. It is known that glucose starvation decreases the intracellular thiamine poolwhile increasing oxidative stress tolerance. Earlier, in whole genome analysis, we detected major differences in the expression of genesrelated to thiamine pathway against oxidative stress in Schizosaccharomyces pombe. We investigated the effects of oxidative stress andglucose repression to thiamine pathway in S. pombe by comparing some genes encoding key enzymes of each related pathway at thetranscription level. In the present study, we found that the expression of genes related to thiamine biosynthesis and transport (thi2, thi3,and pho1) increased in wild type and ird11 cells grown in thiamine-rich media under oxidative stress induced by $H_2O_2$. Based on ourfindings, we suggested that there might be an important effect of oxidative stress on thiamine biosynthesis and transport.

___

  • Bayram T, Pekmez M, Arda N, Yalçın AS (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta 75: 705-709. doi: 10.1016/j.talanta.2007.12.007.
  • Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006). Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem-Biol Interact 163: 94-112. doi: 10.1016/j.cbi.2006.04.014.
  • Friedrich W (1987). Hanbuch der Vitamine. Munich, Germany: Urban & Schwarzenberg (in German).
  • Gibson GE, Park LC, Zhang H, Sorbi S, Calingasan NY (1999). Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann NY Acad Sci 893: 79-94.
  • Gioda CR, de Oliveira Barreto T, Primola-Gomes TN, de Lima DC, Campos PP, Capettini Ldos S, Lauton-Santos S, Vasconcelos AC, Coimbra CC, Lemos VS et al. (2010). Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol-Heart C 298: 2039-2045. doi:10.1152/ajpheart.00820.2009.
  • Gutz H, Heslot H, Leupold U, Loprieno N (1974). Schizosaccharomyces pombe. In: King RC, editor. Handbook of Genetics. New York, NY, USA: Plenum Press, pp. 395-446.
  • Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C (2010). Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia 58: 148-156. doi:10.1002/ glia.20908.
  • Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB (2018). The effect of oxidative stress towards the expression of thiamine biosynthesis genes (THIC and THI1/THI4) in oil palm (Elaeis guineensis). Tropical Life Sciences Research 29: 71-85. doi:10.21315/ tlsr2018.29.1.5.
  • Jhala SS, Hazell AS (2011). Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int 58: 248-260. doi: 10.1016/j.neuint.2010.11.019.
  • Kig C, Turkel S, Temizkan G (2005). Isolation and characterization of glucose derepressed invertase mutants from Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry 69: 2475-2478. doi:10.1271/bbb.69.2475.
  • Kowalska E, Kozik A (2008). The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell Mol Biol Lett 13: 271-282. doi:10.2478/s11658-007-0055-5.
  • Lin MT, Beal MF (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-795. doi:10.1038/nature05292.
  • Manzetti S, Zhang J, van der Spoel D (2014). Thiamin function, metabolism, uptake, and transport. Biochemistry-US 53: 821- 835. doi:10.1021/bi401618y.
  • Maundrell K (1990). nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265: 10857- 10864.
  • Murata K (1982). Actions of two types of thiaminase on thiamin and its analogues. Ann NY Acad Sci 378: 146-156.
  • Mutoh N, Nakagawa CW, Yamada K (2002). Characterization of Cu, Zn-superoxide dismutase-deficient mutant of fission yeast Schizosaccharomyces pombe. Curr Genet 41: 82-88. doi:10.1007/s00294-002-0288-9.
  • Nosaka K (2006). Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl Microbiol Biot 72: 30-40. doi:10.1007/s00253- 006-0464-9.
  • Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005). Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58: 467-479. doi:10.1111/j.1365-2958.2005.04835. x.
  • Palabiyik B, Ghods FJ, Ucar EO (2014). A potential protective role for thiamine in glucose-driven oxidative stress. Gen Mol Res 13: 5582-5593. doi: 10.4238/2014.July.25.13.
  • Palabiyik B, Kig C, Pekmez M, Dalyan L, Arda N, Temizkan G (2012). Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem Genet 50: 336-349. doi:10.1007/s10528-011-9477-x.
  • Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
  • Praekelt UM, Byrne KL, Meacock PA (1994). Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10: 481-490. doi:10.1002/yea.320100407.
  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd ed. New York, NY, USA: Cold Spring Harbor Laboratory Press.
  • Schweingruber AM, Dlugonski J, Edenharter E, Schweingruber ME (1991). Thiamine in Schizosaccharomyces pombe: dephosphorylation, intracellular pool, biosynthesis and transport. Curr Genet 19: 249-254.
  • Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB (1997). The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Gene Dev 11: 1008-1022.
  • Shiozaki K, Russell P (1996). Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Gene Dev 10: 2276-2288.
  • Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998). Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/ Spc1. Gene Dev 12: 1453-1463.
  • Wolak N, Kowalska E, Kozik A, Rapala-Kozik M (2014). Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14: 1249-1262. doi:10.1111/1567-1364.12218.
  • Xue-Franzen Y, Kjaerulff S, Holmberg C, Wright A, Nielsen O (2006). Genome wide identification of pheromone-targeted transcription in fission yeast. BMC Genomics 7: 303. doi:10.1186/1471-2164-7-303.
  • Yee WS, Aziz SDA, Yusof ZNB (2016). Osmotic stress upregulates the transcription of thiamine (vitamin B1) biosynthesis genes (THIC and THI4) in oil palm (Elaies guineensis). Afr J Biotechnol 15: 1566-1574. doi:10.5897/AJB2016.15222.