Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods

In this study, the possible cellular effects of tin dioxide (SnO

___

  • Andreescu S, Ornatska M, Erlichman JS, Estevez A, Leiter JC (2012). Biomedical applications of metal oxide nanoparticles. In: Matijevic E, editor. Fine Particles in Medicine and Pharmacy. New York, NY, USA: Springer, pp. 57-100.
  • Bhattacharya K, Hoffmann E, Schins RFP, Boertz J, Prantl EM, Alink GM, Byrne HJ, Kuhlbusch TAJ, Rahman Q, Wiggers H et al. (2012). Comparison of micro- and nanoscale Fe+3-containing (hematite) particles for their toxicological properties in human lung cells in vitro. Toxicol Sci 126: 173-182.
  • Chávez-Calderón A, Paraguay-Delgado F, Orrantia-Borunda E, Luna-Velasco A (2016). Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage. Chemosphere 165: 33-40.
  • Dönmez Güngüneş Ç, Şeker Ş, Elçin AE, Elçin YM (2017). A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol 40: 215-227.
  • Draeger A, Monastyrskaya K, Babiychuk EB (2011). Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol 81: 703-712.
  • Elcin YM, Elcin AE, Pappas GD (2003). Functional and morphological characteristics of bovine adrenal chromaffin cells on macroporous poly (DL-lactide-co-glycolide) scaffolds. Tissue Eng 9: 1047-1056.
  • Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V (2012). Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76: 114-121.
  • Gambardella C, Mesarič T, Milivojević T, Sepčić K, Gallus L, Carbone S, Ferrando S, Faimali M (2014). Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environ Monit Assess 186: 4249-4259.
  • Hu X, Cook S, Wang P, Hwang HM (2009). In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407: 3070-3072.
  • Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dušinska M (2014). Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 11: 65.
  • Keck CM, Müller RH (2013). Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84: 445-448.
  • Kloskowski T, Gurtowska N, Olkowska J, Nowak JM, Adamowicz J, Tworkiewicz J, Dębski R, Grzanka A, Drewa T (2012). Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC. Int J Oncol 41: 1943-1949.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012). Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86: 1123-1136.
  • Lichti U, Anders J, Yuspa SH (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3: 799-810.
  • Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P (2012). Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One 7: e46536.
  • Martinez-Serra J, Gutierrez A, Muñoz-Capó S, Navarro-Palou M, Ros T, Amat JC, Lopez B, Marcus TF, Fueyo L, Suquia AG et al. (2014). xCELLigence system for real-time label- free monitoring of growth and viability of cell lines from hematological malignancies. Oncotargets Ther 7: 985-994.
  • Meindl C, Absenger M, Roblegg E, Fröhlich E (2013). Suitability of cell-based label-free detection for cytotoxicity screening of carbon nanotubes. Biomed Res Int 2013: 564804.
  • Mortensen LJ, Ravichandran S, Zheng H, DeLouise LA (2010). Progress and challenges in quantifying skin permeability to nanoparticles using a quantum dot model. J Biomed Nanotechnol 6: 596-604.
  • Oberdörster G, Stone V, Donaldson K (2007). Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1: 2-25.
  • Otero-González L, Sierra-Alvarez R, Boitano S, Field J (2012). Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 46: 10271-10278.
  • Paik SYR, Kim JS, Shin SJ, Ko S (2015). Characterization, quantification, and determination of the toxicity of iron oxide nanoparticles to the bone marrow cells. Int J Mol Sci 16: 22243- 22257.
  • Pan CH, Liu WT, Bien MY, Lin IC, Hsiao TC, Ma CM, Lai CH, Chen MC, Chuang KJ, Chuang HC (2014). Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int J Nanomed 9: 3631-3643.
  • Pisani C, Gaillard JC, Nouvel V, Odorico M, Armengaud J, Prat O (2015). High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics 16: 315.
  • Pisani C, Rascol E, Dorandeu C, Gaillard JC, Charnay C, Guari Y, Chopineau J, Armengaud J, Devoisselle JM, Prat O (2017). The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells. PloS One 12: e0182906.
  • Roopan SM, Kumar SH, Madhumitha G, Suthindhiran K (2015). Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotech 175: 1567-1575.
  • Schrand AM, Schlager JJ, Dai L, Hussain SM (2010). Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5: 744-757.
  • Şeker Ş, Arslan YE, Elçin YM (2010). Electrospun nanofibrous PLGA/fullerene-C60 coated quartz crystal microbalance for real-time gluconic acid monitoring. IEEE Sens J 10: 1342-1348.
  • Şeker Ş, Elçin AE, Yumak T, Sınağ A, Elçin YM (2014). In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicol In Vitro 28: 1349-1358.
  • Şeker Ş, Elçin AE, Elçin YM (2016). Real-time monitoring of mesenchymal stem cell responses to biomaterial surfaces and to a model drug by using quartz crystal microbalance. Artif Cell Nanomed B 44: 1722-1732.
  • Shin SW, Song IH, Um SH (2015). Role of physicochemical properties in nanoparticle toxicity. Nanomaterials-Basel 5: 1351-1365.
  • Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017). Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photoch Photobio B 166: 158-168.
  • Vetten MA, Tlotleng N, Tanner Rascher D, Skepu A, Keter FK, Boodhia K, Koekemoer LA, Andraos C, Tshikhudo R, Gulumian M (2013). Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part Fibre Toxicol 10: 50.
  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011). Effects of nano- scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409: 1444-1452.
  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009). The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20: 195103.