Neuropathy in COVID-19 associated with dysbiosis-related inflammation

Neuropathy in COVID-19 associated with dysbiosis-related inflammation

Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut–lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut–lung and gut–brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.

___

  • Abdelnour L, Abdalla ME, Babiker S (2020). COVID 19 infection presenting as motor peripheral neuropathy. Journal of the Formosan Medical Association 119: 119-120.
  • Ahlman H, Nilsson O (2001). The gut as the largest endocrine organ in the body. Annals of Oncology 12 (SUPPLE. 2): S63-S68.
  • Aktas B, Aslim B (2020). Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology 44 (Special issue 1): 265-272.
  • Aleman FDD, Valenzano DR (2019). Microbiome evolution during host aging. PLoS Pathogens 15 (7): 21-24.
  • Amaral FA, Sachs D, Costa VV, Fagundes CT, Cisalpino D et al. (2008). Commensal microbiota is fundamental for the development of inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America 105 (6): 2193-2197.
  • Andrews PLR, Cai W, Rudd JA, Sanger GJ (2021). COVID-19, nausea, and vomiting. Journal of Gastroenterology and Hepatology (Australia) 36 (3): 646-656.
  • Ansone L, Ustinova M, Terentjeva A, Perkons I, Birzniece L et al. (2021). Tryptophan and arginine metabolism is significantly altered at the time of admission in hospital for severe COVID-19 patients: findings from longitudinal targeted metabolomics analysis. medRxiv April (6).
  • Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC et al. (2011). Treating Clostridium difficile infection with fecal microbiota transplantation. Clinical Gastroenterology and Hepatology 9 (12): 1044-1049.
  • Barberio B, Massimi D, Bonfante L, Facchin S, Calò L et al. (2020). Fecal microbiota transplantation for norovirus infection: a clinical and microbiological success. Therapeutic Advances in Gastroenterology 13: 4-7.
  • Benameur K, Agarwal A, Auld SC, Butters MP, Webster A et al. (2020). Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerging Infectious Diseases 26 (9): 2016-2021.
  • Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC (2020). Functional gastrointestinal disorders: advances in understanding and management. Lancet 396 (10263): 1664- 1674.
  • Brun P, Giron MC, Zoppellaro C, Bin A, Porzionato A et al. (2010). Herpes simplex virus type 1 infection of the rat enteric nervous system evokes small-bowel neuromuscular abnormalities. Gastroenterology 138 (5): 1790-1801.
  • Bureau BL, Obeidat A, Dhariwal MS, Jha P (2020). Peripheral neuropathy as a complication of SARS-Cov-2. Cureus 222 (11).
  • Cai TT, Ye XL, Yong HJ, Song B, Zheng XL et al. (2018). Fecal microbiota transplantation relieve painful diabetic neuropathy A case report. Medicine 97 (50): 1-4.
  • Campbell JN, Meyer RA (2006). Mechanisms of neuropathic pain. Neuron 52 (1): 77-92.
  • Cao J, Wang C, Zhang Y, Lei G, Xu K et al. (2021). Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 13 (1): 1-21.
  • Cataldi M, Pignataro G, Taglialatela M (2020). Neurobiology of coronaviruses: Potential relevance for COVID- 19. Neurobiology of Disease 143: 105007.
  • Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP et al. (2021). Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Frontiers in Nutrition 7 (January): 1-8.
  • Chen A, Agarwal A, Ravindran N, To C, Zhang T et al. (2020a). Are gastrointestinal symptoms specific for COVID-19 infection? A prospective case-control study from the United States. Gastroenterology 159: 1161-1163.
  • Chen N, Zhou M, Dong X, Qu J, Gong F et al. (2020b). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395 (10223): 507-513.
  • Chen P, Wang C, Ren Y, Ye Z, Jiang C et al. (2021). Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Molecular Brain 14 (1): 1-18.
  • Chhibber-Goel J, Gopinathan S, Sharma A (2021). Interplay between severities of COVID-19 and the gut microbiome: implications of bacterial co-infections? Gut Pathogens 13 (1): 1-6.
  • Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry 18 (6): 666-673.
  • Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM et al. (2009). Tryptophan degradation in irritable bowel syndrome: Evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterology 9: 1-7.
  • Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF et al. G. (2012). A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Frontiers in Pharmacology 3 (May): 1-9.
  • Costello F, Dalakas MC (2020). Cranial neuropathies and COVID-19: Neurotropism and autoimmunity. Neurology 95 (5): 195-196.
  • Cuozzo M, Castelli V, Avagliano C, Cimini A, D’angelo M et al. (2021). Effects of chronic oral probiotic treatment in paclitaxelinduced neuropathic pain. Biomedicines 9 (4). d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C et al. (2020). Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Frontiers in Medicine 7: 1-7.
  • Das S, Bhowmick S, Tiwari S, Sen S (2020). An updated systematic review of the therapeutic role of hydroxychloroquine in coronavirus disease-19 (COVID-19). Clinical Drug Investigation 40 (7): 591-601.
  • Deffner F, Scharr M, Klingenstein S, Klingenstein M, Milazzo A et al. (2020). Histological Evidence for the Enteric Nervous System and the Choroid Plexus as Alternative Routes of Neuroinvasion by SARS-CoV2. Frontiers in Neuroanatomy 14: 1-11.
  • Deitch EA (2012). Gut-origin sepsis: Evolution of a concept. Surgeon 10 (6): 350-356.
  • Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F et al. (2015). Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain, Behavior, and Immunity 48: 165-173.
  • Ding W, You Z, Chen Q, Yang L, Doheny J et al. (2021). Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells. Anesthesia and Analgesia 132 (4): 1146-1155.
  • Dolatshahi M, Sabahi M, Aarabi MH (2021). pathophysiological clues to how the emergent SARS-CoV-2 can potentially increase the susceptibility to neurodegeneration. Molecular Neurobiology 58 (5): 2379-2394.
  • El-Salhy M, Valeur J, Hausken T, Gunnar HJ (2021). Changes in fecal short-chain fatty acids following fecal microbiota transplantation in patients with irritable bowel syndrome. Neurogastroenterology and Motility 33 (2): e13983.
  • Ellis A, Bennett DLH (2013). Neuroinflammation and the generation of neuropathic pain. British Journal of Anaesthesia 111 (1): 26- 37.
  • Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J et al. (2020). Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion? Brain, Behavior, and Immunity 87: 93-94.
  • Fanos V, Pintus MC, Pintus R, Marcialis MA (2020). Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. Journal of Pediatric and Neonatal Individualized Medicine 9 (1): 90139.
  • Farooqui AA (2021). Contribution of gut microbiota and multiple organ failure in the pathogenesis of COVID-19 infection. In: Tucker M (editor). Gut Microbiota in Neurologic and Visceral Diseases. Elsevier Inc, pp. 255-266.
  • Felsenstein S, Herbert JA, McNamara PS, Hedrich CM (2020). COVID-19: Immunology and treatment options. Clinical Immunology 215 (April): 108448.
  • Ferreira C, Viana SD, Reis F (2020). Gut microbiota dysbiosisimmune hyperresponse- inflammation triad in coronavirus disease 2019 (Covid-19): Impact of pharmacological and nutraceutical approaches. Microorganisms 8 (10): 1-29.
  • Fitzgerald P, Cassidy Eugene M, Clarke G, Scully P, Barry S et al. (2008). Tryptophan catabolism in females with irritable bowel syndrome: Relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterology and Motility 20 (12): 1291-1297.
  • Follmer C (2020). Viral infection-induced gut dysbiosis, neuroinflammation, and α-Synuclein aggregation: updates and perspectives on COVID-19 and neurodegenerative disorders. ACS Chemical Neuroscience 11 (24): 4012-4016.
  • Fortune B, Sharaiha RZ (2020). Gastrointestinal and Hepatic Manifestations of 2019 Novel Coronavirus Disease in a Large Cohort of Infected Patients From New York: Clinical Implications. Gastroenterology 159: 1137-1140.
  • Ghosh R, Roy D, Sengupta S, Benito-León J (2020). Autonomic dysfunction heralding acute motor axonal neuropathy in COVID-19. Journal of NeuroVirology 26 (6): 964-966.
  • Gu J, Gong E, Zhang B, Zheng J, Gao Z et al. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine 202 (3): 415-424.
  • Gu S, Chen Y, Wu Z, Chen Y, Gao H et al (2020). Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clinical Infectious Diseases 71 (10): 2669- 2678.
  • Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine 382: 1708-1720.
  • Guo R, Chen LH, Xing C, Liu T (2019). Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. British Journal of Anaesthesia 123 (5): 637-654.
  • Hanada S, Pirzadeh M, Carver KY, Deng JC (2018). Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Frontiers in Immunology 9 (NOV): 1-15.
  • Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H et al. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487 (7408): 477- 481.
  • Heiss CN, Olofsson LE (2019). The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. Journal of Neuroendocrinology 31 (5): 1-11.
  • Hickson M (2011). Probiotics in the prevention of antibioticassociated diarrhoea and Clostridium difficile infection. Therapeutic advances in gastroenterology 4 (3): 185-197.
  • Holvoet T, Joossens M, Vázquez-Castellanos JF, Christiaens E, Heyerick L et al. (2021). Fecal Microbiota Transplantation Reduces Symptoms in Some Patients with Irritable Bowel Syndrome with Predominant Abdominal Bloating: Short- and Long-term Results from a Placebo-Controlled Randomized Trial. Gastroenterology 160 (1): 145-157.e8.
  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155 (7): 1451-1463.
  • Huang C, Wang Y, Li X, Ren L, Zhao J et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395 (10223): 497-506.
  • Huang L, Ou R, Rabelo de Souza G, Cunha TM, Lemos H et al. (2016). Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase. PLoS Pathogens 12 (5): 1-16.
  • Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E (2020). Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in Immunopathology 42 (1): 75-93.
  • Hviid A, Svanström H, Frisch M (2011). Antibiotic use and inflammatory bowel diseases in childhood. Gut 60: 49-54.
  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH et al. (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America 108 (13): 5354-5359.
  • Jakhmola S, Indari O, Chatterjee S, Jha HC (2020). SARS-CoV-2, an underestimated pathogen of the nervous system. SN Comprehensive Clinical Medicine 2 (11): 2137-2146.
  • Jin X, Lian JS, Hu JH, Gao J, Zheng L et al. (2020). Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69 (6): 1002-1009.
  • Johnsen PH, Hilpüsch F, Cavanagh JP, Leikanger IS, Kolstad C et al. (2018). Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. The Lancet Gastroenterology and Hepatology 3 (1): 17- 24.
  • Johnsen PH, Hilpüsch F, Valle PC, Goll R (2020). The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: Secondary endpoints of a double blind, randomized, placebocontrolled trial. EBioMedicine 51: 102562.
  • Kalantar-Zadeh K, Ward SA, Kalantar-Zadeh K, El-Omar EM (2020). Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS nano 14 (5): 5179-5182.
  • Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112: 399-412.
  • Kirschenbaum D, Imbach LL, Ulrich S, Rushing EJ, Keller E et al. (2020). Inflammatory olfactory neuropathy in two patients with COVID-19. The Lancet 396 (10245): 166.
  • Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F et al. (2014). Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America 111 (42): E4485-E4493.
  • Li CW, Syue LS, Tsai YS, Li MC, Lo CL et al. (2021). Anosmia and olfactory tract neuropathy in a case of COVID-19. Journal of Microbiology, Immunology and Infection 54 (1): 93-96.
  • Li X, Geng M, Peng Y, Meng L, Lu S (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 10 (2): 102-108.
  • Lin B, Wang Y, Zhang P, Yuan Y, Zhang Y et al. (2020). Gut microbiota regulates neuropathic pain: Potential mechanisms and therapeutic strategy. Journal of Headache and Pain 21 (1): 1-16.
  • Lin L, Jiang X, Zhang Z, Huang S, Zhang Z et al. (2020). Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69: 997-1001.
  • Liu F, Ye S, Zhu X, He X, Wang S et al. (2021). Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. Journal of Medical Case Reports 15 (1): 1-9.
  • Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M et al. (2021). Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients with Gastrointestinal Symptoms. Gastroenterology 160 (7): 1-16.
  • Mao L, Jin H, Wang M, Hu Y, Chen S et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 77 (6): 683- 690.
  • Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V et al. (2021). Implications of SARS-CoV-2 infection for neurogastroenterology. Neurogastroenterology and Motility 33 (3): 1-15.
  • Mari A, Abu Baker F, Mahamid M, Sbeit W, Khoury T (2020). The evolving role of gut microbiota in the management of irritable bowel syndrome: an overview of the current knowledge. Journal of Clinical Medicine 9 (3): 685.
  • Mayer EA (2011). Gut feelings: The emerging biology of gut-brain communication. Nature Reviews Neuroscience 12 (8): 453- 466.
  • Mayer EA, Savidge T, Shulman RJ (2014). Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146 (6): 1500-1512.
  • Moloney RD, Johnson AC, O’Mahony SM, Dinan TG, GreenwoodVan Meerveld B et al. (2016). Stress and the microbiotagut-brain axis in visceral pain relevance to irritable bowel syndrome. CNS Neuroscience and Therapeutics 22 (2): 102- 117.
  • Noh K, Kang YR, Nepal MR, Shakya R, Kang MJ et al. (2017). Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs. Archives of Pharmacal Research 40 (12): 1345-1355.
  • O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015). Serotonin, tryptophan metabolism and the brain-gutmicrobiome axis. Behavioural Brain Research 277: 32-48.
  • Odriozola A, Ortega L, Martinez L, Odriozola S, Torrens A et al. (2021). Widespread sensory neuropathy in diabetic patients hospitalized with severe COVID-19 infection. Diabetes Research and Clinical Practice 172.
  • Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF et al. (2015). Adult hippocampal neurogenesis is regulated by the microbiome. Biological Psychiatry 78 (4): e7-e9.
  • Ostaff MJ, Stange EF, Wehkamp J (2013). Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine 5: 1-19.
  • Pan L, Mu M, Yang P, Sun Y, Wang R et al. (2020). Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. The American Journal of Gastroenterology 115: 1.
  • Pan ZY, Chang YX, Han N, Hou FY, Lee BJY et al. (2021). Shortterm high-dose gavage of hydroxychloroquine changes gut microbiota but not the intestinal integrity and immunological responses in mice. Life Sciences 264: 118450.
  • Pitocco D, Viti L, Santoliquido A, Tartaglione L, Di Leo M et al. (2021). Diabetic neuropathy: a risk factor for severe COVID-19? Acta Diabetologica 58 (5): 669-670.
  • Rajput S, Paliwal D, Naithani M, Kothari A, Meena K et al. (2021). COVID-19 and Gut Microbiota: A Potential Connection. Indian Journal of Clinical Biochemistry 36: 266-277.
  • Rhee SH, Pothoulakis C, Mayer EA (2009). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature Reviews Gastroenterology and Hepatology 6 (5): 306-314.
  • Rooks MG, Garrett WS (2016). Gut microbiota, metabolites and host immunity. Nature Publishing Group 16: 341-352.
  • Schmulson M, Ghoshal UC, Barbara G (2021). Managing the inevitable surge of post-COVID-19 functional gastrointestinal disorders. The American Journal of Gastroenterology 116 (1): 4-7.
  • Sehgal R, Bedi O, Trehanpati N (2020). Role of microbiota in pathogenesis and management of viral hepatitis. Frontiers in Cellular and Infection Microbiology, 10: 341.
  • Shanahan F, Quigley EMM (2014). Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 146 (6): 1554-1563.
  • Shaw SY, Blanchard JF, Bernstein CN (2010). Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. The American Journal of Gastroenterology 105 (12): 2687-2692.
  • Shen B, Yi X, Sun Y, Bi X, Du J et al. (2020). Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182: 59-72.
  • Shen S, Lim G, You Z, Ding W, Huang P et al. (2017). Gut microbiota is critical for the induction of chemotherapy-induced pain. Nature Neuroscience 20 (9): 1213-1216.
  • Shi Y, Li Z, Yang C, Liu C (2020). The role of gut-brain axis in SARACoV-2 neuroinvasion: Culprit or innocent bystander? Brain Behavior and Immunity 94: 476-477.
  • Simpson CA, Mu A, Haslam N, Schwartz OS, Simmons JG (2020). Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. Journal of Affective Disorders 266: 429-446.
  • Singh K, Rao A (2021). Probiotics: A potential immunomodulator in COVID-19 infection management. Nutrition Research 87: 1-12.
  • Smith SM, Vale WW (2006). The role of the hypothalamic-pituitaryadrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience 8: 383-395.
  • Song Y, Liu P, Shi XL, Chu YL, Zhang J et al. (2020). SARS- CoV-2 induced diarrhea as onset symptom in patient with COVID-19. Gut 69:1143-1144.
  • Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G et al. (2015). Microbes & neurodevelopment - Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, Behavior, and Immunity 50: 209-220.
  • Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A et al. (2019). GABA-modulating bacteria of the human gut microbiota. Nature Microbiology 4 (3): 396-403.
  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitaryadrenal system for stress response in mice. The Journal of physiology 558 (Pt 1): 263-275.
  • Tai N, Wong FS, Wen L (2015). The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders 16 (1): 55-65.
  • Tang L, Gu S, Gong Y, Li B, Lu H et al. (2020). Clinical Significance of the Correlation between Changes in the Major Intestinal Bacteria Species and COVID-19 Severity. Engineering 6 (10): 1178-1184.
  • Tao W, Wang X, Zhang G, Guo M, Ma H et al. (2021). Re-detectable positive SARS-CoV-2 RNA tests in patients who recovered from COVID-19 with intestinal infection. Protein and Cell 12 (3): 230-235.
  • Tao W, Zhang G, Wang X, Guo M, Zeng W et al. (2020). Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Medicine in Microecology 5: 100023.
  • Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC et al. (2017). Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host and Microbe 21 (4): 455-466.e4.
  • Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L et al. (2020). COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 5 (14): 1-16.
  • Tognini P (2017). Gut microbiota: a potential regulator of neurodevelopment. Frontiers in Cellular Neuroscience 11: 25.
  • Valladares R, Bojilova L, Potts AH, Cameron E, Gardner C et al. (2013). Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB Journal 27 (4): 1711-1720.
  • Wan Y, Li J, Shen L, Zou Y, Hou L et al. (2020). Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. The Lancet Gastroenterology and Hepatology 5 (6): 534-535.
  • Wu Y, Xu X, Chen Z, Duan J, Hashimoto K et al. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity 87: 18-22.
  • Xiao N, Nie M, Pang H, Wang B, Hu J et al. (2021). Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nature Communications 12 (1): 1-13.
  • Yao X, Ye F, Zhang M, Cui C, Huang B et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases 71 (15): 732-739.
  • Yeoh YK, Zuo T, Lui GCY, Zhang F, Liu Q et al. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70 (4): 698-706.
  • Zhang D, Frenette PS (2019). Cross talk between neutrophils and the microbiota. Blood 133(20): 2168-2177.
  • Zhang D, Li S, Wang N, Tan HY, Zhang Z et al. (2020). The cross-talk between gut microbiota and lungs in common lung diseases. Frontiers in Microbiology 11: 301.
  • Zhang H, Kang Z, Gong H, Xu D, Wang J et al. (2020). Digestive system is a potential route of COVID-19: An analysis of singlecell coexpression pattern of key proteins in viral entry process. Gut 69: 1010-1018.
  • Zhang J, Zhang J, Wang R (2018). Gut microbiota modulates drug pharmacokinetics. Drug Metabolism Reviews 50 (3): 357-368.
  • hang L, Han C, Zhang S, Duan C, Shang H et al. (2021). Diarrhea and altered inflammatory cytokine pattern in severe coronavirus disease 2019: Impact on disease course and inhospital mortality. Journal of Gastroenterology and Hepatology (Australia) 36 (2): 421-429.
  • Zheng M, Gao Y, Wang G, Song G, Liu S et al. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology 17: 533-535.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL (2019). Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363: 600.
  • Zuo T, Liu Q, Zhang F, Lui GCY, Tso EYK et al. (2021). Depicting SARS CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2: 276-284.
  • Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL et al. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159 (3): 944-955.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry

Şeref GÜL

An update comprehensive review on the status of COVID-19: vaccines, drugs, variants and neurological symptoms

Muhsin KONUK, Ebru ÖZKAN OKTAY, Tuğba KAMAN, Ömer Faruk KARASAKAL, Salih TUNCAY, Öznur Özge ÖZCAN, Tuğçe SOYLAMIŞ, Mesut KARAHAN

Neuropathy in COVID-19 associated with dysbiosis-related inflammation

Belma ASLIM, Büşra AKTAŞ

Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, Oktay YILDIZ, Halil İbrahim GÜLER, Fulya AY ŞAL, Sabriye ÇANAKÇI, Ali Osman BELDÜZ

Pathogenesis and treatment of cytokine storm in COVID-19

Gökhan KESER, Pamir ATAGÜNDÜZ, Mehmet SOY

Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols

Erman Salih İSTİFLİ, Bektaş TEPE, Cengiz SARIKÜRKCÜ, Arzuhan ŞIHOĞLU TEPE, Paulo A. NETZ, İbrahim Halil KILIÇ

CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics

Rafig GURBANOV, Feride SEVERCAN, Ayca DOĞAN, Mete SEVERCAN

Host variations in SARS-CoV-2 infection

Pelin KILIÇ, Devrim DEMİR DORA, Evrim GÜNEŞ ALTUNTAŞ, Zeynep Yağmur KARAGÜLLEOĞLU, Güldane CENGİZ SEVAL, Hanife Ayşegül MENDİ, Doruk ALTIOK, Elif Zeynep SAVCI, Büşra ÖZKARA, Gizem TUNÇER, Buğrahan Regaip KILINÇ, Evren SUİÇMEZ, Güneysu ÇETİN, Dilruba Beyza UNCUOĞLU, Cansu TEKELİ, Vahdi Umut BENGİ, Si

β-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: computational approach

Yusuf Oloruntoyin AYIPO, Sani Najib YAHAYA, Halimah Funmilayo BABAMALE, Iqrar AHMAD, Harun PATEL, Mohd Nizam MORDI

The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review

Eşref DEMİR