Lactococcus lactis subsp. lactis suşlarında laktoz plazmidlerinin tanımlanması

Özet: Elli L. lactis subsp. lactis suşunda laktik asit fermentasyonu özelliğini kodlayan plazmidler araştırıldı. Doğal suşlardan laktik asit fermentasyonu özelliğinin (Lac+) eliminasyonu, akriflavin uygulaması ile sağlandı. Laktik asit fermentasyonu özelliğini kaybeden (Lac–) mutantlar, laktoz indikatör agar ortamlarında seçildi. Lac+ mutantlar ise plazmid analizleri yapılarak tanımlandı. Lac- ve Lac+ mutantların plazmid içeriklerinin karşılaştırılması sonucu, 50 suş için 6 farklı laktoz plazmidi saptandı. Bu laktoz plazmidlerinin moleküler büyüklükleri 26,3-38,5 kb arasında değişim gösterdi.

Identification of lactoce plasmids in Lactococcus lactis subsp. lactis stains

Plasmids encoding lactic acid fermentation ability were investigated in 50 strains of L. lactis subsp. lactis. Acriflavine was used for the elimination of lactose fermentation ability (Lac + ) from wild type strains. Lactose negative (Lac - ) mutants were selected on lactose indicator agar media. Six different lactose plasmids were identified for fifty strains by comparison of plasmid profiles of Lac - and Lac + mutants. The molecular sizes of these lactose plasmids ranged between 26.3 and 38.5 kb.

___

  • 1. Maeda, S.,Gasson, M. Cloning Expression And Location of the Streptococcus lactis Gene for Phospho-β- Galactosidase. J. General. Microbiol. 132; 331-340, 1986. 2. De Vos, W.M., Simmons, G. Molecular Cloning of Lactose Genes In Dairy Lactic Streptococci: The Phospho-β- Galactosidase Genes And Their Expression Products. Biochemie, 70; 461-473, 1988. 3. Venema, G. Molecular Biology And Genetic Modification of Lactococci. J. Dairy Sci. 76; 2133-2144, 1993. 4. Kok, J. Inducible Gene Expression And Environmentally Regulated Genes In Lactic Acid Bacteria. Antonie van Leeuwen. 70; 129-145, 1996. 5. Liu, C.Q., Dunn, N.W., Duan, K. Cloning And Sequence Analysis of a Plasmid Replicon From Lactococcus lactis subsp. cremoris FG2. J. Gen. Microbiol. 43; 75-80, 1997. 6. Akçelik, M. The Conjugal Plasmid pll10236 Encodes Lactose Fermentation Ability, Restriction Modification Activity And Bacteriocin Production And Immunity In Lactococcus lactis subsp. lactis LL102. Food Microbiology 16; 487- 494, 1999. 7. Mayer, H., Deixler, W.E., Bertsch, W. Plasmid Profiles of Mesophilic Lactic Acid Bacteria. Milchwirtschaftliche Ber. 114; 3-12, 1993. 8. Morita, H., Kamizono, K., Nakamura, S., Fujıta, Y., Sakata, R., Nagata, Y. A, McKay, L.L. Cloning of Citrate Permease Gene of Lactococcus lactis subsp. lactis biovar. diacetylactis N-7 And Expression In Citrate-Negative Lactococci. Milchwissenschaft, 52; 138-141, 1997. 9. Platteuw, C., Hugenholtz, J., Starrenburg, M., Alen-Boerritger, I., De Vos, W.M. Metabolic Engineering Of Lactococcus lactis: Influence of The Overproduction of α-Acetolactate Synthase In Strains Deficient In Lactate Dehydrogenase as a Function Of Culture Conditions. Appl. Environ. Microbiol. 61;3967-3971, 1995. 10. Harrigan, F.W., McCance, E.M. Laboratory Methods In Microbiology. Academic Press London, New York, 285s, 1966. 11. Huggins, R.A. Progress In Dairy Starter Culture Technology. Food Technology, 38; 41-50, 1984. 12. Holt, G.H., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T. Bergey’ s Manual of Determinative Bacteriology. Williams and Wilkins Co., Ninth Edition, 787 p., 1994. 13. McKay, L.L., Baldwin, K.A., Zottola, E.A. Loss of Lactose Metabolism In Lactic Streptococci. Appl. Microbiol. 23(6); 1090-1096, 1972. 14. Terzaghi, B.E., Sandine, W.E. Improved Medium For Lactic Streptococci And Their Bacteriophages. Appl. Microbiol. 29(6); 807-813, 1975. 15. Anderson, D.G., McKay, L.L. A Simple And Rapid Method For Isolating Large Plasmid DNA From Lactic Streptococci. Appl. Environ. Microbiol. 46; 549-552, 1983. 16. Klaenhammer, T.R., McKay, L.L., Baldwin, K.A. Improved Lysis of Group N Streptococci for Isolating And Rapid Characterization of Plasmid DNA. Appl. Environ. Microbiol. 35: 592-600, 1978. 17. Southern, E.M. Measurement of DNA Lengths by Gel Electrophoresis. Analytical Biochemistry, 100; 319-323, 1979. 18. Lucey, M., Daly, C., Fitzgerald, G. Relationship Between Lactococcus lactis subsp. lactis 952, And Industrial Lactococcal Starter Culture And Strains 712, ML3 and C2. J. Appl. Bacteriol. 75(4); 326-335, 1993. 19. Beimfohr, C., Ludwig, W., Schleifer, K.H. Rapid Genotypic Differentiation of Lactococcus lactis Subspecies And Biovar. System. Appl. Microbiol. 20; 216-221, 1993. 20. Leewatcharamas, V., Chia, L.G., Charoenchai, P., Kunajakr, N., Liu, C., Dunn, N.W. Plasmid-Encoded Copper Resistance In Lactococcus lactis. Biotechnology Letters, 19; 639-643, 1997. 21. Akçelik, M. Plasmid Mediated Industrial Traits In L. lactis subsp. lactis LL140. Milchwissenschaft, 54; 603-606, 1999.
  • 22. Feirtag, J.M., Petzel, J.P., Pasalados, E., Baldwin, K.A., McKay, L.L. Thermosensitive Plasmid Replication, Temperature-Sensitive Host Growth, And Chromosomal Plasmid Integration Conferred by Lactococcus Lactis subsp. cremoris Lactose Plasmids In Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57(2); 539-548, 1991. 23. Godon, J.J., Jury, K.L., Shaerman, C.A., Gasson, M.J. The Lactococcus lactis Sex-Factor Aggregation Gene Clu A. Mol. Microbiol. 12; 655-663, 1994. 24. Kranenburg, V., De Vos, W.M. Characterization of Multiple Regions Involved In Replication And Mobilization of Plasmid pNZ4000 Coding For Exopolysaccharide Production In Lactococcus lactis. J. Bacteriol. 18; 5285-5290, 1998.