Sıçan ovaryumunda transforme-edici gelişim faktörü alfa laminin, fibronektin ve desmin' in immünohistokimyasal dağılımı

Özet: Transforme–edici gelişim faktörü alfa’nın (TGFα) saf olarak elde edilmesinden bu yana, çeşitli dokulardaki yerleşimi belirlenmesine çalışılmıştır. Deney modelinde siklik dönemlerin karmaşıklığı sonucu TGFα’nın sistemdeki dağılımını belirlemek kolay olmamaktadır. Özellikle sıçan ovaryumundaki yerleşiminin gebelik öncesi ve gebelik süreci boyunca durumu tam belirlenememiştir. Ayrıca, değişik ara filaman proteinlerinden laminin, fibronektin ve hücre–içi desminin bu süreç içinde TGFα ile herhangi bir etkileşime girip girmediği hakkında kaynak kıtlığı, konuyu tartışmaya açık tutmaktadır. Bu proteinlere özgü monoklonal/poliklonal antikorlar kullanılarak, farklı eşeysel dönemlerde sıçan ovaryal dokularında varlıklarını ve hücresel dağılımını açıklığa kavuşturmak amacıyla immünositokimyasal teknikler uygulandı. Sonuçlarımız, ovaryal dokunun hem TGFα hem de ara filaman proteinleri için immüno boyandığını göstermektedir. TGFα primordiyaldan Graaf folikülüne kadar tüm folikülogenetik aşamalarda immünoreaktivite göstermesine karşın, stromal elemanlarda bu reaksiyon gözlenemedi. Desmin, seyrek olarak bazı stromaL hücrelerde, kan damarları duvarlarında ve ondokuz günlük gebe ovaryumunda gelişmekte olan foliküllerin çevresinde belirlendi. Laminin, teka hücreleri ve damar endoteli bazal laminalarında yerleşikti. Fibronektin immünoreaktivitesi, luteal hücrelerin çevresinde yaygın olarak bulundu. Bu çalışmanın sonuçları sıçan ovaryal dokusunda menstrüal döngünün değişik fazlarında TGFα ve ara filaman proteinlerinin immüno–yerleşimini, bu dokudaki yaygın varlıklarını ve sıçan ovaryal fonksiyonunda önemli rollerinin olduğunu destekler niteliktedir.

Immunohistochemical distribution of transforming growth factor alpha, laminin fibronectin and desmin in rat ovary

Since the pure synthesis of transforming growth facto alpha (TGFa) many attempts have been made in order to determine its distribution in various tissues. As a result of the complexitiy of the cyclic periods throughout experimental models, it is not easy to determine the distribution of TGFa in the system. Especially the pre-and through-gestational pattern of TGFa in rat ovary has not been reported fully. Furthermore, the shortage of literature about intracellular desmin and laminin, fibronectin of different intermediate filaments whether they have any interaction with TGFa through this period, makes the subject worth discussing. Immunocytochemical techniques were utilized in order to elucidate the presence and cellular distribution in rat ovarian tissues of different reproductive stages using monoclonal/polyclonal antibodies against these proteins. Our results indicate that the rat ovarial tissue was immunostained for both TGFa and intermediate filaments. Although TGFa was immunoreactive for all stages from primordial to Graafian follicles, this reaction was not present in stromal elements. Desmin was localized sparsely through some stromal cells, blood vessel walls and around developing follicles of day nineteen pregnant rat ovary. Laminin was localized at the basal laminae of thecal cells and blood vessel endothelia. Fibronectin immunoreactivity was observed commonly around the luteal cells. The results of this study show evidence for the immunolocalization of TGFa and intermediate filaments in rat ovarian tissue in various phases of the menstrual cycle which indicate their presence in this tissue and suggest a role in rat ovarian function.

___

  • 1. Greenwald, G.S., Terranova, P.F.: The Physiology of Reproduction (Knobil, E., et al. Eds). Raven Press, Ltd., New York, 1988, Follicular Selection and Its Control. Pp: 387–445.
  • 2. Greenwald, G.S., Of eggs and follicles. Am J Anat, 135: 1–4, 1972.
  • 3. Greenwald, G.S., Ovarian follicular development and pituitary FSH and LH content in the pregnant rat. Endocrinology, 79: 572–578, 1966.
  • 4. Pedersen, R.A.: The Physiology of Reproduction (Knobil, E., et al. Eds). Raven Press, Ltd., New York, 1988, Early Mammalian Embriyogenesis, pp: 187–30.
  • 5. Twardzik, D.R., Differential expression of transforming growth factor–α during prenatal development of the mouse. Cancer Res, 45: 5413–5416, 1985.
  • 6. Stromberg, K., Pigott, D. A., Ranchalis, J.E., Twardzik, D.R., Human term placenta contains transforming growth factors. Biochem Biophys Res Commun, 106: 354–364, 1982.
  • 7. Demir, R.: İnsanın Gelişimi ve İmplantasyon Biyolojisi, Ankara, 1995 Palme Yayıncılık.
  • 8. Lipner, H.: The Physiology of Reproduction (Knobil, E., et al. Eds). Raven Press, Ltd., New York, 1988, Mechanism of Mammalian Ovulation, pp: 447–488.
  • 9. O’Shea, J.D., An ultrastructural study of smooth muscle–like cells in the theca externa of ovarian follicles in the rat. Anat Rec, 167: 127–140, 1970. 10. Osvaldo–Decima, L., Smooth muscle in the ovary of the rat and monkey. J Ultrastruct Res, 29: 218–237, 1970. 11. Bronson, F.H., Dagg, C.P., Snell, G.D.: Biology of the Laboratory Mouse (Green, E.L., et al. Eds). New York, 1966, mcGraw Hill Book Comp., 187–204.
  • 12. Hsu, S.M., Raine, L., Fanger, H., Use of avidin–biotin–peroxidase complex (ABC) in unlabelled antibody (PAP) procedures. J Histochem, 29: 577–580, 1981.
  • 13. Freeman, M.E.: The physiology of Reproduction (Knobil, E., et al. Eds). Raven Press, Ltd., New York, 1988, The Ovarian Cycle of Rat, pp: 1893–1928.
  • 14. Li, S., Maruo, T., Ladines–Llave, C.A., Samoto, T., Kondo, H., Mochizuki, M., Expression of transforming growth factor–α in the human ovary during follicular growth, regression and atresia. Endocr J, 4 (6): 693–701, 1994.
  • 15. Singh, b., Armstrong, D.T., Transforming growth factor α gene expression and peptide localization in porcine ovarian follicles. Biol Reprod, 53 (6): 1429–35, 1995.
  • 16. Chegini, N., Williams, R.S., Immunocytochemical localization of transforming growth factors (TGFs) TGF–α and TGF–β in human ovarian tissues. J Clin Edocrinol Metab, 74: 973–980, 1992.
  • 17. Selstam, G., Nilsson, I., Matsson, M.O., Changes in the ovarian intermediate filament desmin during the luteal phase. Acta Physiol Scand, 147 (1): 123–9, 1993.
  • 18. Czernobilsky, B., Moll, R., Levy, R., Franke, W.W., Co–expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol, 37: 175–190, 1985.
  • 19. Zhao, Y., Luck, M.R., Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea. J Reprod Fertil, 104 (1): 115–23, 1995.
  • 20. Kruk, P.A., Auersperg, N., A line of rat ovarian surface epithelium provides a continuous source of complex extracellular matrix. In Vitro Cell Dev Biol Anim, 30A (4): 217–225, 1994.
  • 21. Woodruff, T.K., Battaglia, J., Bowdidge, A., Molskness, T.A., Stouffer, R.L., Cataldo, N.A., Giudice, L.C., Orly, J., Mather, J.P., Comparison of functional response of rat, macaque, and human ovarian cells in hormonally defined medium. Biol Reprod, 48 (1): 68–76, 1993.
  • 22. Aten, R.F., Kolodecik, T.R., Behrman, H.R., A cell adhesion receptor antiserum abolishes, whereas laminin and fibronectin glycoprotein components of extracellular matrix promote, luteinization of cultured rat granulosa cells. Endocrinology, 136 (4): 1753–1758, 1995.