Identification of differentially expressed microRNAs in primary esophageal achalasia by next-generation sequencing

Identification of differentially expressed microRNAs in primary esophageal achalasia by next-generation sequencing

Molecular knowledge regarding the primary esophageal achalasia is essential for the early diagnosis and treatment of this neurodegenerative motility disorder. Therefore, there is a need to find the main microRNAs (miRNAs) contributing to the mechanisms of achalasia. This study was conducted to determine some patterns of deregulated miRNAs in achalasia. This case-control study was performed on 52 patients with achalasia and 50 nonachalasia controls. The miRNA expression profiling was conducted on the esophageal tissue samples using the next-generation sequencing (NGS). Differential expression of miRNAs was analyzed by the edgeR software. The selected dysregulated miRNAs were additionally confirmed using the quantitative reverse transcription polymerase chain reaction (qRTPCR). Fifteen miRNAs were identified that were significantly altered in the tissues of the patients with achalasia. Among them, three miRNAs including miR-133a-5p, miR-143-3p, and miR-6507-5p were upregulated. Also, six miRNAs including miR-215-5p, miR-216a-5p, miR-216b-5p, miR-217, miR-7641 and miR-194-5p were downregulated significantly. The predicted targets for the dysregulated miRNAs showed significant disease-associated pathways like neuronal cell apoptosis, neuromuscular balance, nerve growth factor signaling, and immune response regulation. Further analysis using qRT-PCR showed significant down-regulation of hsa-miR-217 (p-value = 0.004) in achalasia tissue. Our results may serve as a basis for more future functional studies to investigate the role of candidate miRNAs in the etiology of achalasia and their application in the diagnosis and probably treatment of the disease.

___

  • Ahmad A, Zhang W, Wu M, Tan S, Zhu T (2018). Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes & Genomics 40: 243-251. doi: 10.1007/s13258-017-0624-6
  • Ates F, Vaezi MF (2015). The pathogenesis and management of achalasia: current status and future directions. Gut Liver 9: 449.
  • Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi: 10.1016/S0092- 8674(04)00045-5
  • Bolger A, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: btu170. doi: 10.1093/bioinformatics/btu170
  • Chen D, Zhang D, Lu Y, Chen L, Zeng Z et al. (2015). microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 6: 10868. doi: 10.18632/oncotarget.3451
  • De León A, De La Serna J, Santiago J, Sevilla C, Fernández‐arquero M et al. (2010). Association between idiopathic achalasia and IL23R gene. J Neurogastroenterol Motil 22: 734-e218. doi: 10.1111/j.1365-2982.2010.01497.x
  • Deng M, Tang H, Zhou Y, Zhou M, Xiong W et al. (2011). miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. Journalof Cell Science 124: 2997- 3005. doi: 10.1242/jcs.085050
  • Dong S, Yin H, Dong C, Sun K, Lv P et al. (2016). Predictive value of plasma microRNA-216a/b in the diagnosis of esophageal squamous cell carcinoma. Disease Markers 2016. doi: 10.1155/2016/1857067
  • Dughera L, Chiaverina M, Cacciotella L, Cisarò F (2011). Management of achalasia. Clinical and Experimental Gastroenterology 4: 33. doi: 10.2147/CEG.S11593
  • Fang Y, Fang D, Hu J (2012). MicroRNA and its roles in esophageal cancer. Medical Science Monitor 18: RA22-RA30. doi: 10.12659/MSM.882509
  • Farrokhi F, Vaezi MF (2007). Idiopathic (primary) achalasia. Orphanet Journal of Rare Diseases 2: 38. doi: 10.1186/1750- 1172-2-38
  • Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2011). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40: 37-52. doi: 10.1093/nar/gkr688
  • Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH (2010). The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clinical Immunology 136:1-15. doi: 10.1016/j.clim.2010.02.005
  • Furuzawa-Carballeda J, Torres-Landa S, Valdovinos MÁ, CossAdame E, Del Campo LAM et al. (2016). New insights into the pathophysiology of achalasia and implications for future treatment. World Journal of Gastroenterology 22: 7892. doi: 10.3748/wjg.v22.i35.7892
  • Ghoshal UC, Daschakraborty SB, Singh R (2012). Pathogenesis of achalasia cardia. World Journal of Gastroenterology 18: 3050- 3057. doi: 10.3748/wjg.v18.i24.3050
  • Grasso M, Piscopo P, Confaloni A, Denti MA (2014). Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19:c6891-6910. doi: 10.3390/molecules19056891
  • Hasanzadeh A, Mikaeli J, Elahi E, Mehrabi N, Etemadi A et al. (2010). Demographic, clinical features and treatment outcomes in 700 achalasia patients in Iran. Middle East Journal of Digestive Diseases 2:c91.
  • Hirano I (2006). Pathophysiology of achalasia and diffuse esophageal spasm. GI Motility online. doi: 10.1038/gimo22
  • Kahrilas PJ, Boeckxstaens G (2013). The spectrum of achalasia: lessons from studies of pathophysiology and high-resolution manometry. Gastroenterology 145: 954-965. doi: 10.1053/j. gastro.2013.08.038
  • Kahrilas PJ, Bredenoord A, Fox M, Gyawali C, Roman S et al. (2015). The Chicago Classification of esophageal motility disorders, v3. 0. Neurogastroenterology & Motility 27: 160-174. doi: 10.1111/nmo.12477
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007). The role of site accessibility in microRNA target recognition. Nature Genetics 39: 1278. doi: 10.1038/ng2135
  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. The EMBO Journal 26: 3169-3179. doi: 10.1038/ sj.emboj.7601758
  • Kozomara A, Griffiths-Jones S (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42: D68-D73. doi: 10.1093/nar/gkt1181
  • Kulski JK (2016). Next-generation sequencing—an overview of the history, tools, and “omic” applications. In: Kulski JK (editor). Next Generation Sequencing-Advances, Applications and Challenges. London, UK: IntechOpen, pp. 3-60.
  • Kye MJ, Inês do Carmo GG (2014). The role of miRNA in motor neuron disease. Frontiers in Cellular Neuroscience 8. doi: 10.3389/fncel.2014.00015
  • Li KKW, Pang JCS, Lau KM, Zhou L, Mao Y et al. (2013a). MiR‐383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathology 23: 413-425. doi: 10.1111/ bpa.12014
  • Li P, Mao WM, Zheng ZG, Dong ZM, Ling ZQ (2013b). Downregulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Digestive Diseases and Sciences 58: 3483-3493. doi: 10.1007/ s10620-013-2854-z
  • Lian J, Tian H, Liu L, Zhang X, Li W et al. (2010). Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death &Disease 1: e94. doi: 10.1038/cddis.2010.70
  • Liu F, Zhou S, Deng Y, Zhang Z, Zhang E et al. (2015). MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death & Disease 6: e1670. doi: 10.1038/ cddis.2015.46
  • Martínez-Ramos R, García-Lozano J, Lucena J, Castillo-Palma M, García-Hernández F et al. (2014). Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus. Lupus 23: 353-359. doi: 10.1177/0961203314522335
  • Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E et al. (2013). Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Molecular Biology Reports 40: 3665-3674. doi: 10.1007/s11033-012-2442-x
  • Morris L, Veeriah S, Chan T (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 29: 3453-3464. doi: 10.1038/onc.2010.127
  • Motameny S, Wolters S, Nürnberg P, Schumacher B (2010). Next generation sequencing of miRNAs–strategies, resources and methods. Genes 1: 70-84.
  • Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY et al. (2014). Rfam 12.0: updates to the RNA families database. Nucleic Acids Research 43: 130-137. doi: 10.1093/nar/gku1063
  • Palmieri O, Mazza T, Bassotti G, Merla A, Tolone S et al. (2019). microRNA‐mRNA network model in patients with achalasia. Neurogastroenterology & Motility 32. doi: 10.1111/nmo.13764
  • Palmieri O, Mazza T, Merla A, Fusilli C, Cuttitta A et al. (2016). Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia. Scientific Reports 6: 31549. doi: 10.1038/srep31549
  • Park W, Vaezi MF (2005). Etiology and pathogenesis of achalasia: the current understanding. The American Journal of Gastroenterology 100: 1404-1414. doi: 10.1111/j.1572- 0241.2005.41775.x
  • Qiu YQ (2013). KEGG Pathway Database. In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. doi: 10.1007/978-1- 4419-9863-7_472
  • Qualman SJ, Haupt HM, Yang P, Hamilton SR (1984). Esophageal Lewy bodies associated with ganglion cell loss in achalasia: similarity to Parkinson’s disease. Gastroenterology 87: 848-856.
  • Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10: 1507-1517. doi: 10.1261/rna.5248604
  • Ruiz-de-León A, Mendoza J, Sevilla-Mantilla C, Arquero MF, Pérezde-la-Serna J et al. (2002). Myenteric antiplexus antibodies and class II HLA in achalasia. Digestive Diseases and Sciences 47: 15-19.
  • Sadowski D, Ackah F, Jiang B, Svenson L (2010). Achalasia: incidence, prevalence and survival. A population‐based study. Neurogastroenterology & Motility 22: e256-e261. doi: 10.1111/j.1365-2982.2010.01511.x
  • Shoji H, Isomoto H, Yoshida A, Ikeda H, Minami H et al. (2017). MicroRNA-130a is highly expressed in the esophageal mucosa of achalasia patients. Experimental and Therapeutic Medicine 14: 898-904. doi: 10.3892/etm.2017.4598
  • Singh RP, Massachi I, Manickavel S, Singh S, Rao NP et al. (2013). The role of miRNA in inflammation and autoimmunity. Autoimmunity Reviews 12: 1160-1165. doi: 10.1016/j. autrev.2013.07.003
  • Sodikoff JB, Lo AA, Shetuni BB, Kahrilas PJ, Yang GY et al. (2016). Histopathologic patterns among achalasia subtypes. Neurogastroenterology & Motility 28:139-145. doi: 10.1111/ nmo.12711
  • Sturm M, Hackenberg M, Langenberger D, Frishman D (2010). TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11: 292. doi: 10.1186/1471-2105-11-292
  • Tahamtan A, Inchley CS, Marzban M, Tavakoli‐Yaraki M, Teymoori‐ Rad M et al. (2016). The role of microRNAs in respiratory viral infection: friend or foe? Reviews in Medical Virology 26: 389- 407. doi: 10.1002/rmv.1894
  • Triadafilopoulos G, Patti MG, Gullo R, Pandolfino JE, Kahrilas PJ et al. (2012). The Kagoshima consensus on esophageal achalasia. Diseases of the Esophagus 25:337-348. doi: 10.1111/j.1442- 2050.2011.01207.x
  • Vantrappen G, Hellemans J (1980). Treatment of achalasia and related motor disorders. Gastroenterology 79: 144-154. doi: 10.1016/0016-5085(80)90090-6