Linkage of nanosecond protein motion with enzymatic methyl transfer by nicotinamide N-methyltransferase

Linkage of nanosecond protein motion with enzymatic methyl transfer by nicotinamide N-methyltransferase

Nicotinamide N-methyltransferase (NNMT), a key cytoplasmic protein in the human body, is accountable to catalyze the nicotinamide (NCA) N1 -methylation through S-adenosyl-L-methionine (SAM) as a methyl donor, which has been linked to many diseases. Although extensive studies have concerned about the biological aspect, the detailed mechanism study of the enzyme function, especially in the part of protein dynamics is lacking. Here, wild-type nicotinamide N-methyltransferase together with the mutation at position 20 with Y20F, Y20G, and free tryptophan were carried out to explore the connection between protein dynamics and catalysis using time-resolved fluorescence lifetimes. The results show that wild-type nicotinamide N-methyltransferase prefers to adapt a less flexible protein conformation to achieve enzyme catalysis.

___

  • Aksoy S, Szumlanski CL, Weinshilboum RM (1994). Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. Journal of Biological Chemistry 269 (20): 14835-14840. doi: 10.1007/BF00006888
  • Alcala JR (1994). The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions. Journal of Chemical Physics 101 (6): 4578-4584. doi: 10.1063/1.467445
  • Bruice TC (2002). A view at the millennium: the efficiency of enzymatic catalysis. Accounts of Chemical Research 35 (3): 139-148. doi: 10.1021/ar0001665
  • Chattopadhyay A, Haldar S (2014). Dynamic insight into protein structure utilizing red edge excitation shift. Accounts of Chemical Research 47 (1): 12-19. doi: 10.1021/ar400006z
  • Da LT, Sheong FK, Silva DA, Huang X (2014). Application of Markov State Models to simulate long timescale dynamics of biological macromolecules. Advances in Experimental Medicine and Biology 805: 29-66. doi: 10.1007/978-3-319-02970-2_2
  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, WolfWatz M et al. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature 438 (7064): 117-121. doi: 10.1038/ nature04105
  • Hammes-Schiffer, Sharon (2013). Catalytic efficiency of enzymes: a theoretical analysis. Biochemistry 52 (12): 2012-2020. doi: 10.1021/bi301515j
  • Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011). Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50 (48): 10422-10430. doi: 10.1021/bi201486f
  • Henzlerwildman K, Kern D (2007). Dynamic personalities of proteins. Nature 450 (7172): 964-972. doi: 10.1038/nature06522
  • James DR, Demmer DR, Steer RP, Verrall RE (1985). Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. Biochemistry 24 (20): 5517-5526. doi: 10.1021/bi00341a036
  • Karplus M, Kuriyan J (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences 102 (19): 6679-6685. doi: 10.1073/pnas.0408930102
  • Kraus D, Yang Q, Kong D, Banks AS, Zhang L et al. (2014). Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508 (7495): 258-262. doi: 10.1038/nature13198
  • Lakowicz JR (1999). Principles of Fluorescence Spectrosopy. 3rd ed. New York, NY, USA: Springer Science+Business Media.
  • Lim BH, Cho BI, Kim YN, Kim JW, Park ST et al. (2006). Overexpression of nicotinamide N-methyltransferase in gastric cancer tissues and its potential post-translational modification. Experimental and Molecular Medicine 38 (5): 455-465. doi: 10.1038/emm.2006.54
  • Liscombe DK, Louie GV, Noel JP (2012). Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports 29 (10): 1238-1250. doi: 10.1039/ c2np20029e
  • Liu F, Zhang J (2020). Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a timeresolved fluorescence study. Journal of Biochemistry 168 (4): 417-425. doi: 10.1093/jb/mvaa063
  • Loring HS, Thompson PR (2018). Kinetic mechanism of nicotinamide N-methyltransferase. Biochemistry 57: 5524- 5532. doi: 10.1021/acs.biochem.8b00775
  • Meadows CW, Tsang JE, Klinman JP (2014). Picosecond-resolved fluorescence studies of substrate and cofactor-binding domain mutants in a thermophilic alcohol dehydrogenase uncover an extended network of communication. Journal of the American Chemical Society 136 (42): 14821-14833. doi: 10.1021/ ja506667k
  • Nemmara VV, Ronak T, J SA, Lacey M, Hong NS et al. (2018). Citrullination inactivates nicotinamide-N-methyltransferase. ACS Chemical Biology 13 (9): 2663-2672. doi: 10.1021/ acschembio.8b00578
  • Nodet G, Abergel D (2007). An overview of recent developments in the interpretation and prediction of fast internal protein dynamics. European Biophysics Journal 36 (8): 985-993. doi: 10.1007/s00249-007-0167-x
  • Parsons RB, Smith SW, Waring RH, Williams AC, Ramsden DB (2003). High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkinson’s disease. Neuroscience Letters 342 (1-2): 13-16. doi: 10.1016/S0304-3940(03)00218-0
  • Peng Y, Sartini D, Pozzi V, Wilk D, Emanuelli M et al. (2011). Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 50 (36): 7800-7808. doi: 10.1021/bi2007614
  • Sartini D, Seta R, Pozzi V, Morganti S, Rubini C et al. (2015). Role of nicotinamide N-methyltransferase in non-small cell lung cancer: in vitro effect of shRNA-mediated gene silencing on tumourigenicity. Biological Chemistry 396 (3): 225-234. doi: 10.1515/hsz-2014-0231
  • Sopkova J, Gallay J, Vincent M, Pancoska P, Lewit-Bentley A (1994). The dynamic behavior of annexin V as a function of calcium ion binding: a circular dichroism, UV absorption, and steadystate and time-resolved fluorescence study. Biochemistry 33 (15): 4490-4499. doi: 10.1021/bi00181a008
  • Srajer V, Teng TY, Ursby T, Pradervand C, Ren Z et al. (1996). Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography. Science (36): 1726-1729. doi: 10.1126/science.274.5293.1726
  • Ulanovskaya OA, Zuhl AM, Cravatt BF (2013). NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nature Chemical Biology 9 (5): 300-306. doi: 10.1038/NCHEMBIO.1204
  • Van Haren MJ, Sastre Torano J, Sartini D, Emanuelli M, Parsons RB et al. (2016). A rapid and efficient assay for the characterization of substrates and inhibitors of nicotinamide N-methyltransferase. Biochemistry 55 (37): 5307-5315. doi: 10.1021/acs.biochem.6b00733
  • Warshel A (1998). Electrostatic Origin of the catalytic power of enzymes and the role of preorganized active sites. Journal of Biological Chemistry 273 (42): 27035-27038. doi: 10.1074/ jbc.273.42.27035
  • Warshel A, Levitt M (1976). Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology 103 (2): 227-249. doi: 10.1016/0022-2836(76)90311-9
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK