Identification of serum predictors of n-acetyl-l-cysteine and isoproterenol induced remodelling in cardiac hypertrophy

Identification of serum predictors of n-acetyl-l-cysteine and isoproterenol induced remodelling in cardiac hypertrophy

Cardiac hypertrophy (CH), leading to cardiac failure is due to chronic metabolic alterations occurring during cellular stress. Besides the already known relationship between oxidative stress and CH, there are implications of reductive stress leading to CH. This study attempted to develop reductive stress-based CH rat model using n-acetyl-L-cysteine (NAC), a glutathione agonist that was compared with typical isoproterenol (ISO) induced CH model. The main objective was to identify serum metabolites that can serve as potent predictors for seven routine clinical and diagnostic parameters in CH: 3-hydroxybutyrate (3-HB), lactic acid (LA), urea, and ECG-CH parameters (QRS complex, R-amplitude, R-R interval, heart rate) that were hypothesized to underlie metabolic remodelling in this study. CH was assessed using electrocardiography, hypertrophic index and histopathological analysis (H&E stain) in both ventricles after 2 weeks. Gas chromatography mass spectroscopy analysis (GC-MS) identified unique metabolite finger-prints. Correlation and pattern analysis revealed strong relationships between specific metabolites and parameters (Pearson’s score > 0.7) of this study. Multiple regression analysis (MRA) for the strongly related metabolites (independent variables) with each of the seven parameters (dependent variables) identified significant predictors for the latter namely fructose, valine, butanoic acid in NAC and cholesterol, erythrose, isoleucine in ISO models, with proline and succinic acid as common for both models. Metabolite set enrichment analysis (MSEA) of those significant predictors (p < 0.05) mapped butyrate metabolism as highly influential pathway in NAC, with arginine-proline metabolism and branched chain amino acid (BCAA) degradation as common pathways in both models, thus providing new insights towards initial metabolic remodeling in the pathogenesis of CH.

___

  • Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M et al. (2014). Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Communication and Signalling 12: 2-17. doi: 10.1186/s12964-014-0078-2
  • Caggiano FM, Kamynina A, Francois AA, Prysyazhna O, Eykyn TR et al. (2020). Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nature Metabolism. doi: 10.1038/s42255-020-00276-5
  • Chong J, Wishart DS, Xia J (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative data analysis. Current Protocols in Bioinformatics 68 (1): 1-128. doi: 10.1002/cpbi.86
  • Delafontaine P, Akao M (2006). Angiotensing II as candidate of cardiac cachexia. Current Opinion in Clinical Nutrition and Metabolic Care 9 (3): 220-224. doi: 10.1097/01. mco.0000222103.29009.70
  • Dhakal CP (2019). Interpreting the basic output (SPSS) of multiple linear regression. International Journal of Science and Research 8: 1448-1452. doi: 10.21275/4061901
  • Doss VA, Kanniyappan S, Kuberapandian D (2019). Interventional effect of Piper betle aqueous extract in the progression of isoproterenol induced cardiac hypertrophy. International Journal of Pharmaceutical Research 11 (4): 216-220. doi: 10.31838/ijpr/2019.11.04.035
  • Doss VA, Kuberapandian D (2019). Evaluation of anti-hypertrophic potential of Enicostemma littorale Blume on isoproterenol induced cardiac hypertrophy. Indian Journal of Clinical Biochemistry. doi: 10.1007/s12291-019-0814-x
  • Droge W, Gross A, Hack V, Kinscherf R, Schykowski M et al. (1997). Role of cysteine and glutathione in HIV infection and cancer cachexia: therapeutic intervention with N-acetylcysteine. Advances in Pharmacology 38: 581-600. doi: 10.1016/S1054- 3589(08)61000-5
  • Edwards CW (1974). Left ventricular hypertrophy in emphysema Thorax 29 (1): 75-80. doi: 10.1136/thx.29.1.75
  • Finocchiaro G, Merio M, Sheikh N, Angelis GD, Papadakis M et al. (2020). The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy. European Journal of Heart Failure 22: 1097-1107. doi: 10.1002/ ejhf.1815
  • Gibb AA, Hill BG (2017). Metabolic coordination of physiological and pathological cardiac remodeling. Circulation Research 123: 107-128. doi: 10.1161/CIRCRESAHA.118.312017
  • Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. (2010). Cholesterol and cardiac arrhythmias. Expert Review of Cardiovascular Therapy 8 (7): 965-979. doi: 10.1586/ERC.10.79
  • Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC (2002). Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. Journal of Cardiac Failure 8 (4): 216-224. doi:10.1054/jcaf.2002.126519
  • Konopelski P, Ufnal M (2016). Electrocardiography in rats: a comparison to human. Physiological Research 65: 717-725. doi: 10.33549/physiolres.933270
  • Larsen MS, Steine K, Hilde JM, Skjorton I, Hodnesdal C et al. (2017). Mechanism of ECG signs in chronic obstructive pulmonary disease. Open Heart 0: e000552. doi: 10.1136/ openhrt-2016-000552
  • Liao JK. (2004). Statin therapy for cardiac hypertrophy and heart failure. Journal of Investigative Medicine 52: 248-253. doi: 10.1136/jim-52-04-33
  • Liao X, Lin B, Qu H, Zhang LL, Lu Y et al. (2019). A high level of circulating valine is a biomarker for type 2 diabetes and associated with the hypoglycemic effect of sitagliptin. Mediators of Inflammation 2019: 1-7. doi: 10.1155/2019/8247019
  • Liu C, Lu XZ, Shen MZ, Xing CY, Ma J et al. (2015). N-acetyl cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovascular Disorders 15 (84): 1-8. doi: 10.1186/s12872-015-0076-3
  • Lui H, Wang J, He T, Becker S, Zhang G et al. (2018). Butyrate: a double-edged sword for health? Advances in Nutrition 9: 21- 29. doi: 10.1093/advances/nmx009
  • Mirtschink P, Krishnan J, Grimm F, Sarre A, Horrl M et al. (2015). HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature 522: 444-449. doi: 10.1038/nature14508
  • Rajasekaran NS, Varadharaj S, Khanderao GD, Davidson CJ, Kanna S et al. (2011). Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxidants & Redox Signaling 14 (6): 957-961.
  • Rauchhaus M, Clark AL, Doehner W, Davos C, Bolger A et al. (2003). The relationship between cholesterol and survival in patients with chronic heart failure. Journal of the American College of Cardiology 42 (11): 1933-1940. doi: 10.1016/j.jacc.2003.07.016
  • Rawat AK, Menahan LA (1975). Antiketogenic action of fructose, glyceraldehyde, and sorbitol in the rat in vivo. Diabetes 24 (10): 926-932. doi: 10.2337/diab.24.10.926
  • Revis NW, Cameron JV (1978). The relationship between fibrosis and lactate dehydrogenase isoenzymes in the experimental hypertrophic heart of rabbits, Cardiovascular Research 12: 348-357.
  • Sowndarya R, Doss VA (2017). Identification of metabolomic changes before and after exercise regimen in stress induced rats. Journal of Environmental Biology 38: 517-522. doi: 10.22438/jeb/38/3/MRN-453
  • Subramanian U, Kumar P, Mani I, Chen D, Kessler I et al. (2016). Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiological Genomics 48: 477-490. doi: 10.1152/ physiolgenomics.00073.2015
  • Tom A, Nair KS (2006). Assessment of branched-chain amino acid status and potential for biomarkers. The Journal of Nutrition 136 (1 Suppl): 324S-330S. doi: 10.1093/jn/136.1.324S
  • Tretter L, Patocs A, Chinopoulos C (2016). Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia and tumorigenesis, Biochimica et Biophysica Acta. 1857: 1086- 1101. doi: 10.1016/j.bbabio.2016.03.012
  • Veeneman JM, Kingma HA, Stellaard F, Jong PE, Reijngoud DJ et al. (2004). Comparison of amino acid oxidation and urea metabolism in hemodialysis patients during fasting and meal intake. Nephrology Dialysis Transplantation 19: 1553-1541. doi: 10.1093/ndt/gfh236
  • Wang J, Xue Z, Lin J, Wang Y, Ying H et al. (2020). Proline improves cardiac remodeling following myocardial infarction and attenuates cardiomyocyte apoptosis via redox regulation, Biochemical Pharmacology 178 (114065): 1-11. doi: 10.1016/j. bcp.2020.114065
  • Wang Q, Yu X, Xu H, Zhao XZ, Sui D (2019). Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evidence Based Complementary Alternative Medicine 2019: 1-9. doi: 10.1155/2019/3714508
  • Yan LJ (2014). Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. Journal of Diabetes Research 2014: 1-11. doi: 10.1155/2014/137919
  • Zahkouk SA, El-Gendy AM, El-Shamy SA (2015). Physiological and histological studies on the heart of male Albino rats exposed to electromagnetic field and the protective role of Silymarin and/ or vitamin E. The Egyptian Journal of Hospital Medicine 58: 94-108. doi: 10.12816/0009364
  • Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK et al. (2012). Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. The FASEB Journal 26 (4): 1442- 1451. doi: 10.1096/fj.11-199869
  • Zheng HK, Zhao JH, Tan Y, Lian T, Ye J et al. (2018). Metabolic reprogramming of the urea pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline, Respiratory Research 19 (94): 1-12. doi: 10.1186/s12931-018- 0800-5
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK