Histopathological and biochemical changes in the liver, kidney, and bloodof amphibians intoxicated with cadmium

Histopathological and biochemical changes in the liver, kidney, and bloodof amphibians intoxicated with cadmium

The worldwide decline in amphibian populations has made heavy metal pollution a subject of interest. The aim of this work was to analyze the effect of sublethal doses of cadmium (Cd) on the liver, kidney, and blood of Rhinella arenarum specimens. Serum markers indicative of hepatic injury (gamma glutamyltransferase, alkaline phosphatase, pseudo cholinesterase, and total cholesterol) and markers of renal dysfunction (blood urea nitrogen, serum creatinine, calcium, and glucose) showed variation in animals treated with a 0.5 mg/kg dose compared to controls. Histopathological images revealed alterations in the liver (hepatocyte ballooning and hyperplasia of Kupffer cells) and kidney (renal tubular lumen dilation with tubular necrosis) of animals with abnormal serum markers. The above-mentioned lesions were more evident with the 5 mg/kg dose. With the 0.5 mg/kg dose, hematological values remained normal with the exception of the leukocyte formula. Animals treated with 5 mg/kg showed a significant decrease in both white and red blood cell counts and hematocrit and hemoglobin values. Differential leukocyte counts showed neutrophilia, monocytosis, and lymphopenia. Morphological aberrations were found in white and red blood cells. Results indicated that the evaluation of morphological and functional parameters in kidney, liver, and blood is required in order to monitor amphibian populations exposed to chemical contaminants.

___

  • Adham KG (2002). Sublethal effects of aquatic pollution in Lake Maryut on the African sharptooth catfish, Clarias gariepinus (Burchell, 1822). J Appl Ichthyol 18: 87–94.
  • Allender MC, Fry MM (2008). Amphibian hematology. Vet Clin North Am Exot Anim Pract 11: 463–480.
  • Barni S, Boncompagni E, Grosso A, Bertone V, Freitas I, Fasola M, Fenoglio C (2007). Evaluation of Rana snk esculenta blood cell response to chemical stressors in the environment during the larval and adult phases. Aquat Toxicol 81: 45–54.
  • Bennett MF, Alspaugh JK (1964). Some changes in the blood of frogs following administration of hydrocortisone. Va J Sci 15: 76–79.
  • Bennett MF, Harbottle JA (1968). The effects of hydrocortisone on the blood of tadpoles and frogs, Rana catesbeiana. Biol Bull 135: 92–95.
  • Bersenyi A, Fekete Z, Berta E (2003). Effect of ingested heavy metals (Cd, Pb and Hg) on haematology and serum biochemistry in rabbits. Acta Vet Hung 51: 297–304.
  • Birge WJ, Westerman AG, Spromberg J (2000). Comparative toxicology and risk assessment of amphibians. In: Sparling DW, Linder G, Bishop CA, editors. Ecotoxicology of Amphibians and Reptiles. Pensacola, FL, USA: Society of Environmental Toxicology and Chemistry (SETAC) Press, pp. 727–791.
  • Collins JP (2010). Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Organ 92: 93–99.
  • Corsaro C, Scalia M, Leotta N, Mondio F, Sichel G (2000). Characterization of Kupffer cells in some amphibia. J Anat 196: 249–261.
  • Davis AK, Maney DL, Maerz JC (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22: 760–772.
  • Dreiem A, Ring A, Fonnum F (2005). Organic solvent-induced cell death in rat cerebellar granule cells: structure dependence of C10 hydrocarbons and relationship to reactive oxygen species formation. Neurotoxicology 26: 321–330.
  • Eriksson E, Revitt DM, Ledin A, Lundy L, Holten Lützhøft HC, Wickman T, Mikkelsen PS (2011). Water management in cities of the future using emission control strategies for priority hazardous substances. Water Sci Technol 64: 2109–2118.
  • European Communities Council and Directive (1986). Guide for use and care of laboratory animals. Off J Eur Communities L 358: 1–29.
  • Ezemonye L, Enuneku AA (2012). Hepatic bioaccumulation of cadmium in the crowned bullfrog, Hoplobatrachus occipitalis and flat backed toad, Bufo maculates. Int J Aqu Sci 3: 15–22.
  • Fenoglio C, Boncompagni E, Fasola M, Gandini C, Comizzoli S, Milanesi G, Barni S (2005). Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta. Ecotoxicol Environ Saf 60: 259–268.
  • Fernández-Turiel JL, Aceñolaza P, Medina ME, Llorens JF, Sardi F (2001). Assessment of a smelter impact area using surface soils and plants. Environ Geochem Hlth 23: 65–78.
  • Gross JA, Chen TH, Karasov WH (2007). Lethal and sublethal effects of chronic cadmium exposure on northern leopard frog (Rana pipiens) tadpoles. Environ Toxicol Chem 26: 1192–1197.
  • Higley E, Tompsett AR, Giesy JP, Hecker M, Wiseman S (2013). Effects of triphenyltin on growth and development of the wood frog (Lithobates sylvaticus). Aquat Toxicol 144–145: 155–161.
  • Hilmy AM, el-Domiaty NA, Daabees AY, Abou Taleb EM (1986). The use of the chelating agent EDTA in the treatment of acute cadmium toxicity, tissue distribution and some blood parameters in the Egyptian toad Bufo regularis. Comp Biochem Physiol C 85: 67–74.
  • James SM, Little EE (2003). The effects of chronic cadmium exposure on American toad (Bufo americanus) tadpoles. Environ Toxicol Chem 22: 377–380.
  • Kostaropoulos I, Kalmanti D, Theodoropoulou B, Loumbourdis NS (2005). Effects of exposure to a mixture of cadmium and chromium on detoxification enzyme (GST, P450-MO) activities in the frog Rana ridibunda. Ecotoxicology 14: 439– 447.
  • Kotsanis N, Iliopoulou-Georgudaki J, Kapata-Zoumbos K (2000). Changes in selected haematological parameters at early stages of the rainbow trout, Oncorhynchus mykiss, subjected to metal toxicants: arsenic, cadmium and mercury. J Appl Ichthyol 16: 276–278.
  • Lajmanovich RC, Cabagna M, Peltzer PM, Stringhini GA, Attademo AM (2005). Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: Hylidae) exposed to insecticide endosulfan. Mutat Res 587: 67–72.
  • Loumbourdis NS (2005). Hepatotoxic and nephrotoxic effects of cadmium in the frog Rana ridibunda. Arch Toxicol 79: 434– 440.
  • Loumbourdis NS, Danscher G (2004). Autometallographic tracing of mercury in frog liver. Environ Pollut 129: 299–304.
  • Loumbourdis NS, Kostaropoulos I, Theodoropoulou B, Kalmanti D (2007). Heavy metal accumulation and metallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium. Environ Pollut 145: 787–792.
  • Loumbourdis NS, Vogiatzis AK (2002). Impact of cadmium on liver pigmentary system of the frog Rana ridibunda. Ecotoxicol Environ Saf 53: 52–58.
  • Medina MF, Cosci A, Cisint S, Crespo CA, Ramos I, Iruzubieta Villagra AL, Fernández SN (2012). Histopathological and biological studies of the effect of cadmium on Rhinella arenarum gonads. Tissue Cell 44: 418–426.
  • Miaud C, Oromí N, Navarro S, Sanuy D (2011). Intra-specific variation in nitrate tolerance in tadpoles of the Natterjack toad. Ecotoxicology 20: 1176–1183.
  • Mouchet F, Baudrimont M, Gonzalez P, Cuenot Y, Bourdineaud JP, Boudou A, Gauthier L (2006). Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae. Aquat Toxicol 78: 157–166.
  • Nanda P, Behera MK (1996). Nickel induced changes in some haematological parameters of a catfish Heteropneustes fossilis (Bloch). Environ Ecol 14: 82–85.
  • Ogunkeye OO, Roluga AI (2006). Serum cholinesterase activity helps to distinguish between liver disease and non-liver disease aberration in liver function tests. Pathophysiology 13: 91–93.
  • Pérez-Coll CS, Herkovits J, Fridman O, Daniel P, D’Eramo JL (1997). Metallothioneins and cadmium uptake by the liver in Bufo arenarum. Environ Pollut 97: 311–315.
  • Sancho E, Ceron JJ, Ferrando MD (2000). Cholinesterase activity and haematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46: 81–86.
  • Sjobeck ML, Haux H, Larsson A, Lithner G (1984). Biochemical and haematological studies on perch Perca fluvaital from cadmium contaminated river Eman. Ecotoxicol Environ Saf 8: 303–312.
  • Sosa A, di Marco L, Ferrari R, Mattassini ML (1999). Plaguicidas y trabajo rural en la provincia de Tucumán, ¿un problema ambiental? Av Energ Renov Medio Ambiente 3: 9–12 (in Spanish).
  • Srivastava AK, Agrawal U (1977). Involvement of pituitary-interrenal axis and cholinergic mechanism during the cold-shock leucocyte sequence in a fresh water teleost, Colisa fasciatus. Arch Anat Microsc Morphol Exp 66: 97–108.
  • Sura P, Ristic N, Bronowicka P, Wróbel M (2006). Cadmium toxicity related to cysteine metabolism and glutathione levels in frog Rana ridibunda tissues. Comp Biochem Physiol C Toxicol Pharmacol 142: 128–135.
  • Thrall MA (2004). Hematology of amphibians. In: Thrall MA, Baker DC, Lassen ED, editors. Veterinary Hematology and Clinical Chemistry: Text and Clinical Case Presentations. Philadelphia, PA, USA: Lippincott, Williams, and Wilkins, pp. 291–297.
  • Vogiatzis AK, Loumbourdis NS (1998). Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2 . Arch Environ Contam Toxicol 34: 64–68.
  • Woodall C, Maclean N (1992). Response of Xenopus laevis to cadmium administration. Comp Biochem Physiol C 101: 109–115.
  • Zhang Y, Huang D, Zhao D, Long J, Song G, Li A (2007). Long-term toxicity effects of cadmium and lead on Bufo raddei tadpoles. Bull Environ Contam Toxicol 79: 178–183
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

MELTEM ALPER, ESRA TOKAY, FERAY KÖÇKAR

GHULAM RAZA, KAZIM ALI, MUHAMMAD YASIN ASHRAF, Shahid MANSOOR, Muhammad JAVID, Shaheen ASAD

Control of Tomato yellow leaf curl virus disease by Enterobacter asburiaeBQ9 as a result of priming plant resistance in tomatoes

Zhou WU, Hongxla LIU, Hongwei LI, Yunpeng WANG, Xueling DING, Hongjiao KE, Hlanhua GUO, Chao WANG

Production of recombinant human dipeptidyl peptidase IV from Sf9cells in microbial fermenters

Özlem AYTEKİN, Kayoko OHURA, Teruko IMAI, Gaye ÖNGEN, Saime İsmet GÜRHAN DELİLOĞLU

ANNA KATARZYNA KURPINSKA, AGNIESZKA JAROSZ, MALGORZATA OZGO, WIESLAW FRANCISZEK SKRZYPCZAK

Genotoxic potential of Cynanchum sarcomedium Meve & Liede coupled with its modulatory action on oxidative-stress?mediatedgenotoxicity by hydrogen peroxideNeethu Kannan BHAGYANATHAN*, John Ernest THOPPILCell and Molecular Biology Laboratory, Department of Botany, University of Calicut, Kerala, India

Neethu Kannan BHAGYANATHAN, John Ernest THOPPIL

Histopathological and biochemical changes in the liver, kidney, and bloodof amphibians intoxicated with cadmium

Maria Elena GONZALEZ, Marcela Fatima MEDINA, Sandra Maria Roxana KLYVER, Iris Maria AYBAR ODSTRCIL

Prediction of glycation sites: new insights from protein structural analysis

Homero SAENZ-SUAREZ, Raul A. POUTOU-PINALES, Janneth GONZALEZ-SANTOS, George E. BARRETO, Lyanda P. RIETO-NAVARRERA, Jose A. SAENZ-MORENO, Patricia LANDARUZI, Luis A. BARRERA-AVELLANEDA

The cytotoxic activity of sanguinarine in C32 human amelanotic melanoma cells

Sabina Iona COJOCARU, Miruna Silvia STAN, Mihal ANTON, Mihaela Rocsana LUCA, Gogu GHORGHITA, Gheorghe STOIAN, Anca DINISCHIOTU

Genotoxic potential of Cynanchum sarcomedium Meve & Liede coupled with its modulatory action on oxidative-stress?mediatedgenotoxicity by hydrogen peroxide

Neethu Kannan BHAGYANATHAN, John Ernest THOPPIL