Prediction of glycation sites: new insights from protein structural analysis

Prediction of glycation sites: new insights from protein structural analysis

Glycation of proteins is a nonenzymatic process in which proteins react with reducing sugar molecules. This process takes place at ?-amino (?-NH+) groups of lysine or hydroxylysine residues as well as α-amino groups of N-terminal residues. In the present study glycation of ?-NH+ groups of lysines was computationally analyzed for 26 proteins based on their 3D structures. We determined the spatial relationship with acidic or basic residues and correlated them with the glycation prediction algorithm Netglycate 1.0 software, which employed primary structure exclusively for glycation site prediction. Of the lysines from 19 of the 20 proteins employed to build the Netglycate 1.0 algorithm 87.80% depicted a spatial relationship with acidic or basic residues. For the remaining seven proteins that were not included in the algorithm, 95.23% of the lysines exhibited a spatial relationship with acidic or basic residues. For these seven proteins, Netglycate 1.0 predicted only 52.38% of the lysines with a previously reported experimental glycation as potential glycation sites. In all cases, distances between residues were less than or equal to 9.78 Å. These results suggest that it is the spatial relationship of lysines with acidic or basic residues in the 3D conformation of a protein that determines the glycation target site, rather than a specific sequence of the primary structure.

___

  • Abraham EC, Cherian M, Smith JB (1994). Site selectivity in the glycation of aA and aB-crystallins by glucose. Biochem Biophys Res Commun 201: 1451-1456.
  • Acosta J, Hettinga J, Flueckiger R, Krumrei N, Goldfine A, Angarita L, Halperin J (2000). Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci USA 97: 5450-5455.
  • Adachi T, Ohta H, Hayashi K, Hirano K, Marklund SL (1992). The site of nonenzymic glycation of human extracellular-superoxidhttps://trdizin.gov.tr/e dismutase in vitro. Free Radical Bio Med 13: 205-210.
  • Baldwin JS, Lee L, Leung TK, Muruganandam A, Mutus B (1995). Identification of the site of non-enzymatic glycation of glutathione peroxidase: rationalization of the glycation-related catalytic alterations on the basis of three-dimensional protein structure. Biochim Biophys Acta 1247: 60-64.
  • Barragan-Diaz AM, Crofts AR, Schulten K, Solovyov IA (2015). Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. J Phys Chem B 119: 433-447.
  • Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patrick JS, Ahmed MU, Dunn JA, Thorpe SR (1989). The Amadori product on protein: structure and reactions. Prog Clin Biol Res 304: 43-67.
  • Beranek M, Drsata J, Palicka V (2001). Inhibitory effect of glycation on catalytic activity of alanine aminotransferase. Mol Cell Biochem 218: 35-39.
  • Berman HM, Henrick K, Nakamura H (2003). Announcing the worldwide Protein Data Bank. Nat Struct Biol 10: 980.
  • Bo-Johansen M, Kiemer L, Brunak S (2006). Analysis and prediction of mammalian protein glycation. Glycobiology 16: 844-853.
  • Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS (2013). Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch Biochem Biophys 529: 99-104.
  • Bouová I, Srbová L, Dr'ata J (2012). Non-enzymatic glycation of aminotransferases and the possibilities of its modulation. In: Sharma RR, editor. Enzyme Inhibition and Bioapplications. Rijeka, Croatia: InTech, p. 314
  • Bunn HF, Shapiro R, McManus M, Garrick L, McDonald MJ, Gallop PM, Gabbay KH (1979). Structural heterogeneity of human hemoglobin A due to nonenzymatic glycosylation. J Biol Chem 254: 3892-3898.
  • Calvo C, Ulloa N, Campos M, Verdugo C, Ayrault-Jarrier M (1993). The preferential site of non-enzymatic glycation of human apolipoprotein A-I in vivo. Clin Chim Acta 217: 193-198.
  • Casey EB, Zhao H-R, Abraham EC (1995). Role of glycine 1 and lysisne 2 in the glycation of bovine gB-crystallin. J Biol Chem 270: 20781-20786.
  • Chen L, Li Q, Li L (2014). The modeled structures of Deg5 and Deg8 proteases in Arabidopsis thaliana. Turk J Biol 38: 168-176.
  • Copley RR, Barton GJ (1994). A structural analysis of phosphate andsulphate binding sites in proteins. J Mol Biol 242: 321-329.
  • Córdoba-Ruiz HA, Poutou-Piñales RA, Echeverri-Peña OY, Algecira-Enciso NA, Landázuri P, Sáenz H, Barrera-Avellaneda LA (2009). Laboratory scale production of the human recombinant iduronate 2-sulfate sulfatase-Like from Pichia pastoris. Afr J Biotechnol 8: 1786-1792.
  • Cotham WE, Hinton DJS, Metz TO, Brock JWC, Thorpe SR, Baynes JW, Ames JM (2003). Mass spectrometric analysis of glucose-modified ribonuclease. Biochem Soc Trans 31: 1426-1427.
  • Dierks T, Schlotawa L, Frese M, Radhakrishnan K, Figura K, Schmidt B (2009). Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease—lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta 1793: 710-725.
  • Erdin S, Lisewski AM, Lichtarge O (2011). Protein function prediction: towards integration of similarity metrics. Curr Opin Struc Biol 21: 180-188.
  • Fischer D, Wolfson H, Lin SL, Nussinov R (1994). Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding. Prot Sci 3: 769-778.
  • Fujita T, Suzuki K, Tada T, Yoshihara Y, Hamaoka R, Uchida K, Matuo Y, Sasaki T, Hanafusa T, Taniguchi N (1998). Human erythrocyte bisphosphoglycerate mutase: inactivation by glycation in vivo and in vitro. J Biochem 124: 1237-1244.
  • Garlick RL, Mazer JS (1983). The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem 258: 6142-6146.
  • Glusker JP (1991). Structural aspects of metal liganding to functional groups in proteins. In: Anfinsen CB, Edsall JT, Richards FM, Eisenberg DS, editors. Advances in Protein Chemistry. New York, NY, USA: Academic Press, pp. 1-76.
  • Guedes S, Vitorino R, Rosário M, Domingues M, Amado F, Domingues P (2009). Mass spectrometry characterization of the glycation sites of bovine insulin by tandem mass spectrometry. J Am Soc Mass Spectrom 20: 1319-1326.
  • Gupta R, Jung E, Gooley AA, Williams KL, Brunak S, Hansen J (1999). Scanning the available Dictyostelium discoideumproteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 9: 1009-1022.
  • Hardy DJ, Wu Z, Phillips JC, Stone JE, Skeel RD, Schulten K (2015). Multilevel summation method for electrostatic force evaluation. J Chem Theory Comput 11: 766-779.
  • Huang X, Tu Z, Wang H, Zhang Q, Shi Y, Xiao H (2013). Increase of ovalbumin glycation by the Maillard reaction after disruption of the disulfide bridge evaluated by liquid chromatography and high resolution mass spectrometry. J Agric Food Chem 61: 2253-2262.
  • Humphrey W, Dalke A, Schulten K (1996). VMD: Visual Molecular Dynamics. J Mol Graph 14: 33-38.
  • Iberg N, Fliickiger R (1986). Nonenzymatic glycosylation of albumin in vivo. J Biol Chem 261: 13542-13545.
  • Julenius K (2007). NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17: 868-876.
  • Landázuri P, Poutou-Piñales RA, Acero-Godoy J, Córdoba-Ruiz HA, Echeverri-Peña OY, Sáenz H, Delgado-Boada JM, Barrera-Avellaneda LA (2009). Cloning and shake flask expression of hrIDS-Like in Pichia pastoris. Afr J Biotechnol 8: 2871-2877.
  • Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R (2004). Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. J Am Soc Mass Spectrom 15: 496-509.
  • McCarthy AD, Cortizo AM, Giménez-Segura G, Bruzzone L, Etcheverry SB (1998). Nonenzymatic glycosylation of alkaline phosphatase alters its biological properties. Mol Cel Biochem 181: 63-69.
  • Mironova R, Niwa T, Dimitrova R, Boyanova M, Ivanov I (2003). Glycation and posttranslational processing of human interferon-g expressed in Escherichia coli. J Biol Chem 278: 51068-51074.
  • Mironova R, Niwa T, Hayashi H, Dimitrova R, Ivanov I (2001). Evidence for nonenzymatic glycosylation in Escherichia coli. Mol Microbiol 39: 1061-1068.
  • Miyata T, Inagi R, Wada Y, Ueda Y, Iida Y, Takahashi M, Taniguchi N, Maeda K (1994). Glycation of human beta 2-microglobulin in patients with hemodialysis-associated amyloidosis: identification of the glycated sites. Biochemistry-US 33: 12215-12221.
  • Monnier VM, Kohn RR, Cerami A (1984). Accelerated age-related browning of human collagen in diabetes mellitus. P Natl Acad Sci USA 81: 583-587.
  • Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Barrera-Avellaneda LA, Echeverri-Peña OY (2013). Low scale expression and purification of putative active iduronate 2-sulfate sulfatase from E. coli K12. J Microbiol 51: 213-221.
  • Neufeld EF, Muenzer J (2001). The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly W, Valle D. The Metabolic and Molecular Bases of Inherited Disease. New York, NY, USA: McGraw-Hill, pp. 3421-3452.
  • Niemann MA, Bhown AS, Miller EJ (1991). The principal site of glycation of human complement factor B. Biochem J 274: 473-480.
  • Peitsch M (1996). ProMod and Swiss-Model: internet-based tools for automated comparative protein modeling. Biochem Soc Trans 24: 274-279.
  • Poutou-Piñales RA, Vanegas Niño A, Landázuri P, Sáenz H, Lareo L, Echeverri OY, Barrera Avellaneda LA (2010). Human sulfatase transiently and functionally active expressed in E. coli K12. Electron J Biotechnol 13: article 8.
  • Sáenz H (2005). Expresión, purificación parcial y estudios computacionales de la IDShr producida en Pichia pastoris. PhD, Pontificia Universidad Javeriana, Bogotá, DC, Colombia (in Spanish).
  • Sáenz H, Lareo L, Poutou RA, Sosa C, Barrera LA (2007). Predicción computacional de la estructura terciaria de la iduronato 2-sulfato sulfatasa humana. Biomédica 27: 7-20 (in Spanish).
  • Seddigh S, Darabi M (2014). Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana. Turk J Biol 38: 140-150.
  • Shaklai N, Garlick RL, Bunn HF (1984). Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 259: 3812-3817.
  • Shapiro R, McManus MJ, Zalut C, Bunn HF (1980). Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem 255: 3120-3127.
  • Shilton BH, Walton DJ (1991). Sites of glycation of human and horse liver alcohol dehydrogenase in vivo. J Biol Chem 266: 5587-5592.
  • Shuvaev V, Fujii J, Kawasaki Y, Itoh H, Hamaoka R, Barbier A, Ziegler O, Siest G, Taniguchi N (1999). Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochim Biophys Acta 1454: 296-308.
  • Sinha J, Plantz BA, Inan M, Meagher MM (2005). Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-T. Biotechnol Bioeng 89: 102-112.
  • Smith JB, Hanson SRA, Cerny RL, Zhao HR, Abraham EC (1996). Identification of the glycation site of lens gB-crystallin by fast atom bombardment tandem mass spectrometry. Anal Biochem 243: 186-189.
  • Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KTB, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L et al. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32: 1478-1488.
  • Suravajjala S, Cohenford M, Frost LR, Pampati PK, Dain JA (2013). Glycation of human erythrocyte glutathione peroxidase: effect on the physical and kinetic properties. Clin Chim Acta 421: 170-176.
  • Swamy-Mruthinti S, Schey KL (1997). Mass spectroscopic identification of in vitro glycated sites of MIP. Curr Eye Res 16: 936-941.
  • Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N (1995). In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry-US 34: 1433-1438.
  • The UniProt Consortium (2012). Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40: D71-D75.
  • Uribarri J, Woodruff S, Goodman SI, Cai W, Chen X, Pyzik R, Ma Yong A, Striker G, Vlassara H (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110: 911-916.
  • Verbeke P, Clark BFC, Rattan SIS (2000). Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol 35: 787-794.
  • Wallace AC, Borkakoti N, Thornton JM (1997). TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Prot Sci 6: 2308-2323.
  • Watkins NG, Thorpe SR, Baynes JW (1985). Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. J Biol Chem 260: 10629-10636.
  • Zeng J, Dunlop RA, Kenneth J, Rodgers KJ, Davies MJ (2006). Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochem J 398: 197-206.
  • Zhang X, Medzihradszky KF, Cunningham J, Lee PD, Rognerud CL, Harmatz P, Witkowska HE (2001). Characterization of glycated hemoglobin in diabetic patients: usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J Chromat B 759: 1-15.
  • Zhao HR, Smith JB, Jiang XY, Abraham EC (1996). Sites of glycation of bB2-crystallin by glucose and fructose. Biochem Bioph Res Co 229: 128-133.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK