Identification of differentially expressed microRNAs in primary esophageal achalasia by next-generation sequencing

Molecular knowledge regarding the primary esophageal achalasia is essential for the early diagnosis and treatment of this neurodegenerative motility disorder. Therefore, there is a need to find the main microRNAs (miRNAs) contributing to the mechanisms of achalasia. This study was conducted to determine some patterns of deregulated miRNAs in achalasia. This case-control study was performed on 52 patients with achalasia and 50 nonachalasia controls. The miRNA expression profiling was conducted on the esophageal tissue samples using the next-generation sequencing (NGS). Differential expression of miRNAs was analyzed by the edgeR software. The selected dysregulated miRNAs were additionally confirmed using the quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fifteen miRNAs were identified that were significantly altered in the tissues of the patients with achalasia. Among them, three miRNAs including miR-133a-5p, miR-143-3p, and miR-6507-5p were upregulated. Also, six miRNAs including miR-215-5p, miR-216a-5p, miR-216b-5p, miR-217, miR-7641 and miR-194-5p were downregulated significantly. The predicted targets for the dysregulated miRNAs showed significant disease-associated pathways like neuronal cell apoptosis, neuromuscular balance, nerve growth factor signaling, and immune response regulation. Further analysis using qRT-PCR showed significant down-regulation of hsa-miR-217 (p-value = 0.004) in achalasia tissue. Our results may serve as a basis for more future functional studies to investigate the role of candidate miRNAs in the etiology of achalasia and their application in the diagnosis and probably treatment of the disease.

___

  • Ahmad A, Zhang W, Wu M, Tan S, Zhu T (2018). Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes & Genomics 40: 243-251. doi: 10.1007/s13258-017-0624-6
  • Ates F, Vaezi MF (2015). The pathogenesis and management of achalasia: current status and future directions. Gut Liver 9: 449. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi: 10.1016/S0092-8674(04)00045-5
  • Bolger A, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: btu170. doi: 10.1093/bioinformatics/btu170
  • Chen D, Zhang D, Lu Y, Chen L, Zeng Z et al. (2015). microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 6: 10868. doi: 10.18632/oncotarget.3451
  • De León A, De La Serna J, Santiago J, Sevilla C, Fernández‐arquero M et al. (2010). Association between idiopathic achalasia and IL23R gene. J Neurogastroenterol Motil 22: 734-e218. doi: 10.1111/j.1365-2982.2010.01497.x
  • Deng M, Tang H, Zhou Y, Zhou M, Xiong W et al. (2011). miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. Journalof Cell Science 124: 2997-3005. doi: 10.1242/jcs.085050
  • Dong S, Yin H, Dong C, Sun K, Lv P et al. (2016). Predictive value of plasma microRNA-216a/b in the diagnosis of esophageal squamous cell carcinoma. Disease Markers 2016. doi: 10.1155/2016/1857067
  • Dughera L, Chiaverina M, Cacciotella L, Cisarò F (2011). Management of achalasia. Clinical and Experimental Gastroenterology 4: 33. doi: 10.2147/CEG.S11593
  • Fang Y, Fang D, Hu J (2012). MicroRNA and its roles in esophageal cancer. Medical Science Monitor 18: RA22-RA30. doi: 10.12659/MSM.882509
  • Farrokhi F, Vaezi MF (2007). Idiopathic (primary) achalasia. Orphanet Journal of Rare Diseases 2: 38. doi: 10.1186/1750-1172-2-38
  • Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2011). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40: 37-52. doi: 10.1093/nar/gkr688
  • Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH (2010). The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clinical Immunology 136:1-15. doi: 10.1016/j.clim.2010.02.005
  • Furuzawa-Carballeda J, Torres-Landa S, Valdovinos MÁ, Coss-Adame E, Del Campo LAM et al. (2016). New insights into the pathophysiology of achalasia and implications for future treatment. World Journal of Gastroenterology 22: 7892. doi: 10.3748/wjg.v22.i35.7892
  • Ghoshal UC, Daschakraborty SB, Singh R (2012). Pathogenesis of achalasia cardia. World Journal of Gastroenterology 18: 3050-3057. doi: 10.3748/wjg.v18.i24.3050
  • Grasso M, Piscopo P, Confaloni A, Denti MA (2014). Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19:c6891-6910. doi: 10.3390/molecules19056891
  • Hasanzadeh A, Mikaeli J, Elahi E, Mehrabi N, Etemadi A et al. (2010). Demographic, clinical features and treatment outcomes in 700 achalasia patients in Iran. Middle East Journal of Digestive Diseases 2:c91.
  • Hirano I (2006). Pathophysiology of achalasia and diffuse esophageal spasm. GI Motility online. doi: 10.1038/gimo22
  • Kahrilas PJ, Boeckxstaens G (2013). The spectrum of achalasia: lessons from studies of pathophysiology and high-resolution manometry. Gastroenterology 145: 954-965. doi: 10.1053/j.gastro.2013.08.038
  • Kahrilas PJ, Bredenoord A, Fox M, Gyawali C, Roman S et al. (2015). The Chicago Classification of esophageal motility disorders, v3. 0. Neurogastroenterology & Motility 27: 160-174. doi: 10.1111/nmo.12477
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007). The role of site accessibility in microRNA target recognition. Nature Genetics 39: 1278. doi: 10.1038/ng2135
  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. The EMBO Journal 26: 3169-3179. doi: 10.1038/sj.emboj.7601758
  • Kozomara A, Griffiths-Jones S (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42: D68-D73. doi: 10.1093/nar/gkt1181
  • Kulski JK (2016). Next-generation sequencing—an overview of the history, tools, and “omic” applications. In: Kulski JK (editor). Next Generation Sequencing-Advances, Applications and Challenges. London, UK: IntechOpen, pp. 3-60.
  • Kye MJ, Inês do Carmo GG (2014). The role of miRNA in motor neuron disease. Frontiers in Cellular Neuroscience 8. doi: 10.3389/fncel.2014.00015
  • Li KKW, Pang JCS, Lau KM, Zhou L, Mao Y et al. (2013a). MiR‐383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathology 23: 413-425. doi: 10.1111/bpa.12014
  • Li P, Mao WM, Zheng ZG, Dong ZM, Ling ZQ (2013b). Down-regulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Digestive Diseases and Sciences 58: 3483-3493. doi: 10.1007/s10620-013-2854-z
  • Lian J, Tian H, Liu L, Zhang X, Li W et al. (2010). Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death &Disease 1: e94. doi: 10.1038/cddis.2010.70
  • Liu F, Zhou S, Deng Y, Zhang Z, Zhang E et al. (2015). MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death & Disease 6: e1670. doi: 10.1038/cddis.2015.46
  • Martínez-Ramos R, García-Lozano J, Lucena J, Castillo-Palma M, García-Hernández F et al. (2014). Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus. Lupus 23: 353-359. doi: 10.1177/0961203314522335
  • Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E et al. (2013). Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Molecular Biology Reports 40: 3665-3674. doi: 10.1007/s11033-012-2442-x
  • Morris L, Veeriah S, Chan T (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 29: 3453-3464. doi: 10.1038/onc.2010.127
  • Motameny S, Wolters S, Nürnberg P, Schumacher B (2010). Next generation sequencing of miRNAs–strategies, resources and methods. Genes 1: 70-84.
  • Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY et al. (2014). Rfam 12.0: updates to the RNA families database. Nucleic Acids Research 43: 130-137. doi: 10.1093/nar/gku1063
  • Palmieri O, Mazza T, Bassotti G, Merla A, Tolone S et al. (2019). microRNA‐mRNA network model in patients with achalasia. Neurogastroenterology & Motility 32. doi: 10.1111/nmo.13764
  • Palmieri O, Mazza T, Merla A, Fusilli C, Cuttitta A et al. (2016). Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia. Scientific Reports 6: 31549. doi: 10.1038/srep31549
  • Park W, Vaezi MF (2005). Etiology and pathogenesis of achalasia: the current understanding. The American Journal of Gastroenterology 100: 1404-1414. doi: 10.1111/j.1572-0241.2005.41775.x
  • Qiu YQ (2013). KEGG Pathway Database. In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. doi: 10.1007/978-1-4419-9863-7_472
  • Qualman SJ, Haupt HM, Yang P, Hamilton SR (1984). Esophageal Lewy bodies associated with ganglion cell loss in achalasia: similarity to Parkinson’s disease. Gastroenterology 87: 848-856. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10: 1507-1517. doi: 10.1261/rna.5248604
  • Ruiz-de-León A, Mendoza J, Sevilla-Mantilla C, Arquero MF, Pérez-de-la-Serna J et al. (2002). Myenteric antiplexus antibodies and class II HLA in achalasia. Digestive Diseases and Sciences 47: 15-19.
  • Sadowski D, Ackah F, Jiang B, Svenson L (2010). Achalasia: incidence, prevalence and survival. A population‐based study. Neurogastroenterology & Motility 22: e256-e261. doi: 10.1111/j.1365-2982.2010.01511.x
  • Shoji H, Isomoto H, Yoshida A, Ikeda H, Minami H et al. (2017). MicroRNA-130a is highly expressed in the esophageal mucosa of achalasia patients. Experimental and Therapeutic Medicine 14: 898-904. doi: 10.3892/etm.2017.4598
  • Singh RP, Massachi I, Manickavel S, Singh S, Rao NP et al. (2013). The role of miRNA in inflammation and autoimmunity. Autoimmunity Reviews 12: 1160-1165. doi: 10.1016/j.autrev.2013.07.003
  • Sodikoff JB, Lo AA, Shetuni BB, Kahrilas PJ, Yang GY et al. (2016). Histopathologic patterns among achalasia subtypes. Neurogastroenterology & Motility 28:139-145. doi: 10.1111/nmo.12711
  • Sturm M, Hackenberg M, Langenberger D, Frishman D (2010). TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11: 292. doi: 10.1186/1471-2105-11-292
  • Tahamtan A, Inchley CS, Marzban M, Tavakoli‐Yaraki M, Teymoori‐Rad M et al. (2016). The role of microRNAs in respiratory viral infection: friend or foe? Reviews in Medical Virology 26: 389-407. doi: 10.1002/rmv.1894
  • Triadafilopoulos G, Patti MG, Gullo R, Pandolfino JE, Kahrilas PJ et al. (2012). The Kagoshima consensus on esophageal achalasia. Diseases of the Esophagus 25:337-348. doi: 10.1111/j.1442-2050.2011.01207.x
  • Vantrappen G, Hellemans J (1980). Treatment of achalasia and related motor disorders. Gastroenterology 79: 144-154. doi: 10.1016/0016-5085(80)90090-6
  • Vychytilova-Faltejskova P, Kiss I, Klusova S, Hlavsa J, Prochazka V et al. (2015). MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagnostic Pathology 10: 1. doi: 10.1186/s13000-015-0272-6
  • Wang B, Shen Z-l, Jiang K-w, Zhao G, Wang C-y et al. (2015a). MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer 15: 1. doi: 10.1186/s12885-015-1438-z
  • Wang C, Ji B, Cheng B, Chen J, Bai B (2014a). Neuroprotection of microRNA in neurological disorders (Review). Biomedical Reports 2: 611-619. doi: 10.3892/br.2014.297
  • Wang R-T, Xu M, Xu C-X, Song Z-G, Jin H (2014b). Decreased expression of miR216a contributes to non–small-cell lung cancer progression. Clinical Cancer Research 20: 4705-4716. doi: 10.1158/1078-0432.CCR-14-0517
  • Wang X, Li M, Wang Z, Han S, Tang X et al. (2015b). Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. Journal of Biological Chemistry 290: 3925-3935. doi: 10.1074/jbc.M114.596866
  • Xu D, Ma P, Gao G, Gui Y, Niu X et al. (2015). MicroRNA-383 expression regulates proliferation, migration, invasion, and apoptosis in human glioma cells. Tumor Biology 36: 7743-7753. doi: 10.1007/s13277-015-3378-2
  • Xu Z, Zeng X, Tian D, Xu H, Cai Q et al. (2014). MicroRNA-383 inhibits anchorage-independent growth and induces cell cycle arrest of glioma cells by targeting CCND1. Biochemical and Biophysical Research Communications 453: 833-838. doi: 10.1016/j.bbrc.2014.10.047
  • Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T et al. (2013). Tumor‐suppressive microRNA‐135a inhibits cancer cell proliferation by targeting the c‐MYC oncogene in renal cell carcinoma. Cancer Science 104: 304-312. doi: 10.1111/cas.12072