Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity

A Kunitz-type trypsin inhibitor protein has been purified and characterized from seeds of Acacia nilotica L. LC-MS/MS analysis of Acacia nilotica trypsin inhibitor (AnTI) provided the N-terminal fragment of 11 amino acids which yielded 100% identity with already reported Kunitz-type trypsin inhibitor protein of Acacia confusa (AcTI) in UniProtKB database search. SDS-PAGE showed a single band of ~21 kDa under nonreduced condition and appearance of a daughter band (17 kDa) in the presence of β-mercaptoethanol indicating the presence of interchain disulfide linkage typical for Kunitz-type trypsin inhibitors. AnTI was purified from seed extract by using a combination of anion exchange and gel filtration chromatography. Since AnTI showed maximum homology with AcTI, a molecular structure of AcTI was predicted which showed highly β-sheeted molecular conformation similar to crystallographic structure of Enterolobium contortisiliquum trypsin inhibitor (EcTI). AnTI (20 μg) produces significant population inhibition against different human pathogenic bacteria along strong antifungal activity (50 μg). Entomotoxin potential of AnTI was evaluated against two stored grain insect pests Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera) and Sitophilus oryzae (Linnaeus) (Curculionidae: Coleoptera). Statistically significant mortality of T. castaneum adults was observed at 1.5 mg after 15 days in comparison to control. Additionally, number of total eggs, larvae, pupae, adults, and their male/female ratio were also severely reduced in comparison to control. Similarly, two generation progeny of S. oryzae was studied after mixing AnTI with rice kernels. Mean percent mortality of adult population was significantly higher after 9 days of exposure in comparison to control group. AnTI significantly reduced the F1 generation while little mortality was observed for F2 generation. Exploration of such potent molecules is the prerequisite of our time regarding the anticipation of postantibiotic era and the development of insect resistance against chemical pesticides.

___

  • Ahmad M, 2008, SCAND J LAB ANIM SCI, V35, P29
  • Ahmed AK, 2000, AUST J BOT, V48, P417, DOI 10.1071/BT99042
  • Alasbahi R, 2008, PHARMAZIE, V63, P86, DOI 10.1691/ph.2008.7633
  • Aliyu B, 2006, SOME ETHNO MED PLANT, V1, P135
  • Amsterdam D, 1996, SUSCEPTIBILITY TESTI, V4th
  • Armstrong WB, 2013, CANCER PREV RES, V6, P410, DOI 10.1158/1940-6207.CAPR-13-0004
  • Aviles-Gaxiola S, 2018, J FOOD SCI, V83, P17, DOI 10.1111/1750-3841.13985
  • Batista IFC, 1996, PHYTOCHEMISTRY, V41, P1017, DOI 10.1016/0031-9422(95)00710-5
  • Bendre AD, 2018, INT J BIOL MACROMOL, V113, P933, DOI 10.1016/j.ijbiomac.2018.02.148
  • Benkert P, 2011, BIOINFORMATICS, V27, P343, DOI 10.1093/bioinformatics/btq662
  • Bezerra CD, 2016, PROCESS BIOCHEM, V51, P792, DOI 10.1016/j.procbio.2016.03.008
  • Biasini M, 2014, NUCLEIC ACIDS RES, V42, pW252, DOI 10.1093/nar/gku340
  • BOYLE VJ, 1973, ANTIMICROB AGENTS CH, V3, P418, DOI 10.1128/AAC.3.3.418
  • CARDONA C, 1989, J ECON ENTOMOL, V82, P310, DOI 10.1093/jee/82.1.310
  • Cruz ACB, 2013, PLANT PHYSIOL BIOCH, V70, P61, DOI 10.1016/j.plaphy.2013.04.023
  • Dabhade AR, 2016, PROCESS BIOCHEM, V51, P659, DOI 10.1016/j.procbio.2016.02.015
  • De Leo F, 2002, INSECT BIOCHEM MOLEC, V32, P489, DOI 10.1016/S0965-1748(01)00126-6
  • Desjardins Philippe, 2010, J Vis Exp, DOI 10.3791/2565
  • Dias LP, 2017, PROCESS BIOCHEM, V57, P228, DOI 10.1016/j.procbio.2017.03.015
  • Dokka M. K., 2014, International Journal of Current Microbiology and Applied Sciences, V3, P184
  • Duncan AJ, 1991, TOXIC SUBSTANCES CRO .
  • ERIKSSON AE, 1993, PROTEIN SCI, V2, P1274, DOI 10.1002/pro.5560020810
  • Furstenberg-Hagg J, 2013, INT J MOL SCI, V14, P10242, DOI 10.3390/ijms140510242
  • Guimaraes LC, 2015, PESTIC BIOCHEM PHYS, V118, P1, DOI 10.1016/j.pestbp.2014.12.001
  • Heibges A, 2003, MOL GENET GENOMICS, V269, P535, DOI 10.1007/s00438-003-0861-z
  • Heibges A, 2003, MOL GENET GENOMICS, V269, P526, DOI 10.1007/s00438-003-0860-0
  • HEWICK RM, 1981, J BIOL CHEM, V256, P7990
  • Jain E, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-136
  • Jamal F, 2013, PHYTOCHEM REV, V12, P1, DOI 10.1007/s11101-012-9231-y
  • Kim JY, 2009, INT J MOL SCI, V10, P2860, DOI 10.3390/ijms10062860
  • Kim JY, 2005, BIOCHEM BIOPH RES CO, V330, P921, DOI 10.1016/j.bbrc.2005.03.057
  • Konala G, 2012, INT J PHARM SCI RES, V3, P3241, DOI 10.13040/IJPSR.0975-8232.3(9).3241-48
  • KORTT AA, 1981, EUR J BIOCHEM, V115, P551
  • LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0
  • Laskowski R. A., 2001, INT TABLES CRYSTALLO, VF, P722, DOI DOI 10.1107/97809553602060000882
  • Lopes JLS, 2009, PHYTOCHEMISTRY, V70, P871, DOI 10.1016/j.phytochem.2009.04.009
  • Macedo MLR, 2016, CURR MICROBIOL, V72, P538, DOI 10.1007/s00284-015-0970-z
  • Major IT, 2008, PLANT PHYSIOL, V146, P888, DOI 10.1104/pp.107.106229
  • Maslin B., 2006, ACACIA UTILISATION M, V26, P86
  • Pandey PK, 2016, BIOCATAL AGRIC BIOTE, V6, P202, DOI 10.1016/j.bcab.2016.04.005
  • Park Y, 2005, J AGR FOOD CHEM, V53, P6491, DOI 10.1021/jf0505123
  • Rao KN, 2007, BBA-PROTEINS PROTEOM, V1774, P1264, DOI 10.1016/j.bbapap.2007.07.009
  • Revina TA, 2004, BIOCHEMISTRY-MOSCOW+, V69, P1092, DOI 10.1023/B:BIRY.0000046882.99647.21
  • Silva RGG, 2015, IND CROP PROD, V70, P48, DOI 10.1016/j.indcrop.2015.02.058
  • Sumikawa JT, 2006, PLANTA MED, V72, P393, DOI 10.1055/s-2005-916237
  • Tripathi VR, 2014, PROCESS BIOCHEM, V49, P347, DOI 10.1016/j.procbio.2013.11.007
  • Yamchi A, 2018, CELL MICROBIOL, V20, DOI 10.1111/cmi.12796
  • Yang XY, 2006, PEPTIDES, V27, P1726, DOI 10.1016/j.peptides.2006.01.020
  • Zhou DW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062252
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity

Muhammad IMRAN, Ahmed AKREM, Qamar SAEED, Sohaib MEHMOOD, Arslan ALI, Aisha MUNAWAR, Binish KHALIQ, Farzeen ANWAR, Friedrich BUCK, Saber HUSSAIN, Ahsan SAEED, Muhammad YASIN ASHRAF

Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro

Ayşegül DOĞAN, Taha Bartu HAYAL, Fikrettin ŞAHİN, Hatice Burcu ŞİŞLİ, Binnur KIRATLI

Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats

Ahmed A. SAYED, Ahmed M. SALEM, Ameera S. ALSHİNNAWY, Wael M. EL-SAYED, Alshaimaa M. TAHA

Mustafa Gorkem OZYURT, Ece BAYİR, Sule DOGAN, Sukru OZTURK, Aylin SENDEMİR

Mehmet OZANSOY, Mehmet Ozgen ALTİNTAS, Muzaffer Beyza OZANSOY, Necmeddin GUNAY, Ertugrul KİLİC, Ulkan KİLİC

Mustafa Gokhan ERTOSUN, Suray PEHLİVANOGLU, Sayra DİLMAC, Gamze TANRİOVER, Osman Nidai OZES

Two boron-containing compounds affect the cellular viability of SH-SY5Y cells in an in vitro amyloid-beta toxicity model

Ülkan KILIÇ, Mehmet OZANSOY, Ertuğrul KILIÇ, Muzaffer Beyza OZANSOY, Mehmet Özgen ALTINTAŞ, Necmeddin GÜNAY

Ameera S. ALSHİNNAWY, Wael M. EL-SAYED, Alshaimaa M. TAHA, Ahmed A. SAYED, Ahmed M. SALEM

Dilek OZCAN, Hikmet Murat SİPAHİOGLU

AKT-mediated phosphorylation of TWIST1 is essential for breast cancer cell metastasis

Mustafa Gökhan ERTOSUN, Gamze TANRIÖVER, Sayra DİLMAÇ, Suray PEHLİVANOĞLU, Osman Nidai ÖZEŞ