Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity

Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity

A Kunitz-type trypsin inhibitor protein has been purified and characterized from seeds of Acacia nilotica L. LC-MS/MS analysis of Acacia nilotica trypsin inhibitor (AnTI) provided the N-terminal fragment of 11 amino acids which yielded 100% identity with already reported Kunitz-type trypsin inhibitor protein of Acacia confusa (AcTI) in UniProtKB database search. SDS-PAGE showed a single band of ~21 kDa under nonreduced condition and appearance of a daughter band (17 kDa) in the presence of β-mercaptoethanol indicating the presence of interchain disulfide linkage typical for Kunitz-type trypsin inhibitors. AnTI was purified from seed extract by using a combination of anion exchange and gel filtration chromatography. Since AnTI showed maximum homology with AcTI, a molecular structure of AcTI was predicted which showed highly β-sheeted molecular conformation similar to crystallographic structure of Enterolobium contortisiliquum trypsin inhibitor (EcTI). AnTI (20 μg) produces significant population inhibition against different human pathogenic bacteria along strong antifungal activity (50 μg). Entomotoxin potential of AnTI was evaluated against two stored grain insect pests Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera) and Sitophilus oryzae (Linnaeus) (Curculionidae: Coleoptera). Statistically significant mortality of T. castaneum adults was observed at 1.5 mg after 15 days in comparison to control. Additionally, number of total eggs, larvae, pupae, adults, and their male/female ratio were also severely reduced in comparison to control. Similarly, two generation progeny of S. oryzae was studied after mixing AnTI with rice kernels. Mean percent mortality of adult population was significantly higher after 9 days of exposure in comparison to control group. AnTI significantly reduced the F1 generation while little mortality was observed for F2 generation. Exploration of such potent molecules is the prerequisite of our time regarding the anticipation of postantibiotic era and the development of insect resistance against chemical pesticides.

___

  • Ahmad M, Zaman F, Sharif T, Ch MZ (2008). Antidiabetic and hypolipidemic effects of aqueous methanolic extract of Acacia nilotica pods in alloxan-induced diabetic rabbits. Scandinavian Journal of Laboratory Animal Sciences 35 (1): 29-34. doi: 10.23675/sjlas.v35i1.135
  • Ahmed AK, Johnson KA (2000). Horticultural development of Australian native edible plants. Australian Journal of Botany 48 (4): 417-426.doi: 10.1071/BT99042
  • Alasbahi R, Melzig M (2008). Screening of some Yemeni medicinal plants for inhibitory activity against peptidases. Die PharmazieAn International Journal of Pharmaceutical Sciences 63 (1): 86-88. doi: 10.1691/ph.2008.7633
  • Aliyu B (2006). Some ethno-medicinal plants of the Savannah Regions of West Africa description and phytochemicals. Triumph Publishing Company 1: 135-152.
  • Amsterdam D (1996). Susceptibility testing of antimicrobials in liquid media. Antibiotics in Laboratory Medicine.
  • Armstrong WB, Taylor TH, Kennedy AR, Melrose RJ, Messadi DV et al. (2013). Bowman birk inhibitor concentrate and oral leukoplakia: a randomized phase IIb trial. Cancer Prevention Research 6 (5): 410-418. doi: 10.1158/1940-6207
  • Aviles-Gaxiola S, Chuck-Hernández C, Serna Saldívar SO (2018). Inactivation methods of trypsin inhibitor in legumes: a review. Journal of Food Science 83 (1): 17-29. doi: 10.1111/1750- 3841.13985
  • Batista IF, Oliva MLV, Araujo MS, Sampaio MU, Richardson M et al. (1996). Primary structure of a Kunitz-type trypsin inhibitor from Enterolobium contortisiliquum seeds. Phytochemistry 41 (4): 1017-1022. doi: 10.1016/0031-9422(95)00710-5
  • Bendre AD, Ramasamy S, Suresh C (2018). Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. International Journal of Biological Macromolecules 113: 933-943. doi: 10.1016/j. ijbiomac.2018.02.148
  • Benkert P, Biasini M, Schwede T (2010). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27 (3): 343-350. doi: 10.1093/bioinformatics/ btq662
  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42 (1): 252-258. doi: 10.1093/nar/gku340
  • Boyle VJ, Fancher ME, Ross RW (1973). Rapid, modified KirbyBauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrobial Agents and Chemotherapy 3 (3): 418-424. doi: 10.1128/AAC.3.3.418
  • Cardona C, Posso CE, Kornegay J, Valor J, Serrano M (1989). Antibiosis effects of wild dry bean accessions on the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). Journal of Economic Entomology 82 (1): 310-315. doi: 10.1093/ jee/82.1.310
  • Cruz AC, Massena FS, Migliolo L, Macedo LL, Monteiro NK et al. (2013). Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiology and Biochemistry 70: 61-68. doi: 10.1016/j. plaphy.2013.04.023
  • da Silva Bezerra C, de Oliveira CFR, Machado OLT, de Mello GSV, da Rocha Pitta MG et al. (2016). Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: a multifunctional Kunitz inhibitor. Process Biochemistry 51 (6): 792-803. doi: 10.1016/j.procbio.2016.03.008
  • Dabhade AR, Mokashe NU, Patil UK (2016). Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia amara Boiv. Process Biochemistry 51 (5): 659-674. doi: 10.1016/j.procbio.2016.02.015
  • De Leo F, Gallerani R (2002). The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochemistry and Molecular Biology 32 (5): 489- 496. doi: 10.1016/S0965-1748(01)00126-6
  • Desjardins P, Conklin D (2010). NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments (45): e2565. doi: 10.3791/2565
  • Dias LP, Oliveira JT, Rocha-Bezerra LC, Sousa DO, Costa HP et al. (2017). A trypsin inhibitor purified from Cassia leiandra seeds has insecticidal activity against Aedes aegypti. Process Biochemistry 57: 228-238. doi: 10.1016/j.procbio.2017.03.015
  • Dokka MK, Davuluri SP (2014). Antimicrobial activity of a trypsin inhibitor from the seeds of Abelmoschus moschatus L. International Journal of Current Microbiology and Applied Sciences 3 (5): 184-199
  • Duncan AJ, In G (1991). Toxic Substances in Crop Plants. Cambridge, UK: The Royal Society of Chemistry
  • Eriksson AE, Matthews BW, Cousens LS (1993). Refinement of the structure of human basic fibroblast growth factor at 1.6 Å resolution and analysis of presumed heparin binding sites by selenate substitution. Protein Science 2 (8): 1274-1284. doi: 10.1002/pro.5560020810
  • Furstenberg-Hagg J, Zagrobelny M, Bak S (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242-10297. doi: 10.3390/ijms140510242
  • Guimarães LC, de Oliveira CFR, Marangoni S, de Oliveira DGL, Macedo MLR (2015). Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth. Pesticide Biochemistry and Physiology 118:1-9. doi: 10.1016/j. pestbp.2014.12.001
  • Heibges A, Glaczinski H, Ballvora A, Salamini F, Gebhardt C (2003). Structural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Molecular Genetics and Genomics 269 (4): 526- 534. doi: 10.1007/s00438-003-0860-0
  • Heibges A, Salamini F, Gebhardt C (2003). Functional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Molecular Genetics and Genomics 269 (4): 535-541. doi: 10.1007/s00438-003-0861-z
  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981). A gasliquid solid phase peptide and protein sequenator. Journal of Biological Chemistry 256 (15): 7990-7997
  • Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N et al. (2009). Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10 (1): 136. doi: 10.1186/1471-2105-10-136
  • Jamal F, Pandey PK, Singh D, Khan M (2013). Serine protease inhibitors in plants: nature’s arsenal crafted for insect predators. Phytochemistry Reviews 12 (1): 1-34. doi: 10.1007/s11101- 012-9231-y
  • Kim J-Y, Park S-C, Hwang I, Cheong H, Nah J-W et al. (2009). Protease inhibitors from plants with antimicrobial activity. International Journal of Molecular Sciences 10 (6): 2860-2872. doi: 10.3390/ijms10062860
  • Kim J-Y, Park S-C, Kim M-H, Lim H-T, Park Y et al. (2005). Antimicrobial activity studies on a trypsin–chymotrypsin protease inhibitor obtained from potato. Biochemical and Biophysical Research Communications 330 (3): 921-927. doi: 10.1016/j.bbrc.2005.03.057
  • Konala G, Seva L, Davuluri SP (2012). Antimicrobial activity of prickly chaff (Achyranthes aspera) seed trypsin inhibitor. International Journal of Pharmaceutical Sciences and Research 3 (9): 3241. doi: 10.1.1.299.9896&rep
  • Kortt AA, Jermyn MA (1981). Acacia proteinase inhibitors: purification and properties of the trypsin inhibitors from Acacia elata seed. European Journal of Biochemistry 115 (3): 551-558. doi: 10.1111/j.1432-1033.1981.tb06238.x
  • Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685
  • Laskowski R, MacArthur M, Thornton J (2006). PROCHECK: validation of protein-structure coordinates. International Tables for Crystallography F: 722-725
  • Lopes J, Valadares N, Moraes D, Rosa JC, Araújo H et al. (2009). Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa. Phytochemistry 70 (7): 871- 879. doi: 10.1016/j.phytochem.2009.04.009
  • Macedo MLR, Ribeiro SF, Taveira GB, Gomes VM, de Barros KM et al. (2016). Antimicrobial activity of ILTI, a Kunitz‐type trypsin inhibitor from Inga laurina (SW.) Willd. Current Microbiology 72 (25): 538-544. doi: 10.1007/s00284-015-0970-z
  • Major IT, Constabel CP (2008). Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiology 146 (3): 888-903. doi: 10.1104/pp.107.106229
  • Maslin B, McDonald M (2006). AcaciaSearch: evaluation of Acacia as a woody crop option for southern Australia. Acacia Utilisation and Management–Adding Value 26:86
  • Pandey PK, Singh D, Singh R, Sinha MK, Singh S et al. (2016). Cassia fistula seed’s trypsin inhibitor (s) as antibiosis agent in Helicoverpa armigera pest management. Biocatalysis and Agricultural Biotechnology 6:202-208. doi: 10.1016/j. bcab.2016.04.005
  • Park Y, Choi BH, Kwak J-S, Kang C-W, Lim H-T et al. (2005). Kunitztype serine protease inhibitor from potato (Solanum tuberosum L. cv. Jopung). Journal of Agricultural and Food Chemistry 53 (16): 6491-6496. doi: 10.1021/jf0505123
  • Rao K, Suresh C (2007). Bowman–Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1774 (10): 1264-1273. doi: 10.1016/j. bbapap.2007.07.009
  • Revina T, Speranskaya A, Kladnitskaya G, Shevelev A, Valueva T (2004). Subtilisin protein inhibitor from potato tubers. Biochemistry (Moscow) 69 (10): 1092-1098. doi: 10.1023/B:B IRY.0000046882.99647.21
  • Silva RG, Vasconcelos IM, Acrísio Filho J, Carvalho AF, Souza TM et al. (2015). Castor bean cake contains a trypsin inhibitor that displays antifungal activity against Colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Industrial Crops and Products 70:48-55. doi: 10.1016/j.indcrop.2015.02.058
  • Sumikawa JT, Nakahata AM, Fritz H, Mentele R, Sampaio MU et al. (2006). A Kunitz-type glycosylated elastase inhibitor with one disulfide bridge. Planta Medica 72 (5): 393-397. doi: 10.1055/s2005-916237
  • Tripathi VR, Sahasrabuddhe AA, Kumar S, Garg SK (2014). Purification and characterization of a trypsin inhibitor from Senna tora active against midgut protease of podborer. Process Biochemistry 49 (2): 347-355. doi: 10.1016/j. procbio.2013.11.007
  • Yamchi A, Ben C, Rossignol M, Zareie SR, Mirlohi A et al. (2018). Proteomics analysis of Medicago truncatula response to infection by the phytopathogenic bacterium Ralstonia solanacearum points to jasmonate and salicylate defence pathways. Cellular Microbiology 20 (4): e12796. doi: 10.1111/ cmi.12796
  • Yang X, Li J, Wang X, Fang W, Bidochka MJ et al. (2006). Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds. Peptides 27 (7): 1726-1731. doi: 10.1016/j. peptides.2006.01.020
  • Zhou D, Lobo YA, Batista IF, Marques-Porto R, Gustchina A et al. (2013). Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. PloS One 8 (4): e62252. doi: 10.1371/journal. pone.0062252
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats

Ahmed A. SAYED, Ahmed M. SALEM, Ameera S. ALSHİNNAWY, Wael M. EL-SAYED, Alshaimaa M. TAHA

Sohaib MEHMOOD, Muhammad IMRAN, Arslan ALI, Aisha MUNAWAR, Binish KHALIQ, Farzeen ANWAR, Qamar SAEED, Friedrich BUCK, Saber HUSSAIN, Ahsan SAEED, Muhammad YASIN ASHRAF, Ahmed AKREM

Mustafa Gorkem OZYURT, Ece BAYİR, Sule DOGAN, Sukru OZTURK, Aylin SENDEMİR

AKT-mediated phosphorylation of TWIST1 is essential for breast cancer cell metastasis

Mustafa Gökhan ERTOSUN, Gamze TANRIÖVER, Sayra DİLMAÇ, Suray PEHLİVANOĞLU, Osman Nidai ÖZEŞ

Maryam SAEİDİ, Reza ZAREİE

Prediction, isolation, overexpression and antifungal activity analysis of Medicago truncatula var. truncatula putative thaumatin like proteins (TLP-1,-2,-3,-4 and-5)

Maryam SAEİDİ, Reza ZAREİE

Simultaneous production of alpha and beta amylase enzymes using separate gene bearing recombinant vectors in the same Escherichia coli cells

Dilek ÖZCAN, Hikmet Murat SİPAHİOĞLU

Poly (I:C)- and doxorubicin-loaded magnetic dendrimeric nanoparticles affect the apoptosis-related gene expressions in MCF-7 cells

Ufuk GÜNDÜZ, Rouhollah KHODADUST, Aktan ALPSOY, Gözde ÜNSOY

Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro

Ayşegül DOĞAN, Taha Bartu HAYAL, Fikrettin ŞAHİN, Hatice Burcu ŞİŞLİ, Binnur KIRATLI

Two boron-containing compounds affect the cellular viability of SH-SY5Y cells in an in vitro amyloid-beta toxicity model

Ülkan KILIÇ, Mehmet OZANSOY, Ertuğrul KILIÇ, Muzaffer Beyza OZANSOY, Mehmet Özgen ALTINTAŞ, Necmeddin GÜNAY