Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro

Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro

Because breast cancer is complicated at the pathological, histological, clinical, and molecular levels, identification of new genetic targets against carcinogenic pathways is required to generate clinically relevant treatment options. In the current study, ubiquitin-specific protease 7 (USP7), which regulates various cellular pathways including Mdm2, p53, and NF-kappa B, was selected as a potential gene editing strategy for breast cancer in vitro. Anticancer activity of USP7 gene suppression has been evaluated through cell proliferation, gene expression, cell cycle, sphere dissemination, and cell migration analysis. Here, siRNA and shRNA strategies and an allosteric small-molecule inhibitor of USP7 were used to define potential anticancer activity against MCF7 and T47D human breast cancer cell lines. Both blockage of deubiquitination by p5091 and knockdown of USP7 reduced cell proliferation, cell migration, colony formation, and sphere dissemination for both MCF7 and T47D breast cancer cell lines. Restriction of USP7 activity strongly enhanced apoptotic gene expression and reduced metastatic ability of breast cancer cell lines. This study describes one potential molecular target for the suppression of breast cancer proliferation and metastasis. Identification of USP7 as a promising gene editing candidate might open up the possibility of new molecular drug research in targeting the ubiquitination pathway in cancer.

___

  • Al - Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018). Metastatic and triple-negative breast cancer: challenges and treatment options. Drug delivery and translational research 8 (5): 1483-1507. doi: 10.1007/s13346-018-0551-3
  • Amerik AY, Hochstrasser M (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta - Molecular Cell Research 1695 (1-3): 189-207. doi: 10.1016/j. bbamcr.2004.10.003
  • Borner C, Andrews DW (2014). The apoptotic pore on mitochondria: are we breaking through or still stuck? Cell Death & Differentiation 21 (2): 187-191. doi: 10.1038/cdd.2013.169
  • Brahemi G, Kona FR, Fiasella A, Buac D, Soukupova J et al. (2010) Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. Journal of Medicinal Chemistry 53 (7): 2757-2765. doi: 10.1021/jm901757t
  • Carra G, Panuzzo C, Torti D, Parvis G, Crivellaro S et al. (2017) Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/ deleted clones. Oncotarget 8 (22): 35508-35522. doi: 10.18632/ oncotarget.16348
  • Chen J (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine 6 (3): 26104. doi: 10.1101/ cshperspect.a026104
  • Ciechanover A (2013). Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorganic and Medical Chemistry 21 (12): 3400-3410. doi: 10.1016/j.bmc.2013.01.056
  • Demirci S, Hayal TB, Kıratlı B, Şişli HB, Demirci S et al. (2019). Design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer. Chemical Biology and Drug Design 94 (3): 1584-1595. doi: 10.1111/cbdd.13575
  • Dey A, Wong ET, Bist P, Tergaonkar V, Lane D (2007). Nutlin-3 inhibits the NFκB pathway in a p53 dependent manner: implications in lung cancer therapy. Cell Cycle 6 (17): 2178- 2185. doi: 10.4161/cc.6.17.4643
  • Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R et al. (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology 107 (2): 275-281. doi: 10.1046/j.1365- 2141.1999.01715.x
  • Doğan A, Demirci S, Çağlayan AB, Kılıç E, Günal, MY et al. (2014). Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biological Trace Element Research 162 (1-3): 72-79. doi: 10.1007/s12011-014-0104-7
  • Gallo L, Ko J, Donoghue D (2017). The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 16 (7): 634- 648. doi: 10.1080/15384101.2017.1288326
  • Gasco M, Shami S, Crook T (2002). The p53 pathway in breast cancer. Breast Cancer Research 4 (2): 70. doi: 10.1186/bcr426
  • Gupta A, Shah K, Oza MJ, Behl T (2019). Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomedicine & Pharmacotherapy 109: 484-492. doi: 10.1016/j. biopha.2018.10.155
  • Hoeller D, Dikic I (2009). Targeting the ubiquitin system in cancer therapy. Nature 458 (7237): 438. doi: 10.1038/nature07960
  • Hosseini H, Obradović MM, Hoffmann M, Harper KL, Sosa MS et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature 540 (7634): 552-558. doi: 10.1038/nature20785
  • Hu T, Zhang J, Sha B, Li M, Wang L et al. (2019). Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Molecular Carcinogenesis 58 (1): 42-54. doi: 10.1002/mc.22905
  • Huang KT, Chen YH, Walker AM (2004). Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 37 (3): 406-412. doi: 10.2144/04373ST05.
  • Kessler BM, Fortunati E, Melis M, Pals CE, Clevers H et al. (2007). Proteome changes induced by knock-down of the deubiquitylating enzyme HAUSP/USP7. Journal of Proteome Research 6 (11): 4163-4172. doi: 10.1021/pr0702161
  • King RW, Deshaies RJ, Peters J-M, Kirschner MW (1996). How proteolysis drives the cell cycle. Science 274 (5293): 1652-1659. doi: 10.1126/science.274.5293.1652
  • Kuo CT, Wang JY, Lin YF, Wo AM, Chen BPC et al. (2017). Threedimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Scientific Reports 7 (1): 4363. doi: 10.1038/s41598-017-04718-1
  • Lai H, Ma F, Trapido E, Meng L, Lai S (2004). Spectrum of p53 tumor suppressor gene mutations and breast cancer survival. Breast Cancer Research and Treatment 83 (1): 57-66. doi: 10.1023/B: BREA.0000010699.53742.60
  • Li S, Sun A, Liang X, Ma L, Shen L et al. (2017) Histone demethylase PHF8 promotes progression and metastasis of gastric cancer. American Journal of Cancer Research 7 (3): 448-461.
  • Lim LY, Vidnovic N, Ellisen LW, Leong CO (2009). Mutant p53 mediates survival of breast cancer cells. British Journal of Cancer 101 (9): 1606-1612. doi: 10.1038/sj.bjc.6605335
  • Liu M, Chen S, Yueh MF, Wang G, Hao H el at. (2016). Reduction of p53 by knockdown of the UGT1 locus in colon epithelial cells causes an increase in tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology 2 (1): 63-76. doi: 10.1016/j. jcmgh.2015.08.008
  • Lyden D, Welch DR, Psaila B (2011). Cancer metastasis: biologic basis and therapeutics. 1st ed. New York, NY, USA: Cambridge University Press.
  • Mali S (2013). Delivery systems for gene therapy. Indian Journal of Human Genetics 19 (1): 3. doi: 10.4103/0971-6866.112870
  • Morra F, Merolla F, Napolitano V, Ilardi G, Miro C et al. (2017). The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget 8 (19): 31815-31829. doi: 10.18632/ oncotarget.16463
  • Mourtzoukou D, Drikos I, Goutas N, Vlachodimitropoulos D (2018). Review of the Ubiquitin Role in DNA Repair and Tumorigenesis, with Emphasis in Breast Cancer Treatment; Current Data and Future Options. In: Boutou E, Stürzbecher HW (editors). Ubiquitination Governing DNA Repair: Implications in Health and Disease. London, United Kingdom: IntechOpen, pp. 179-199.
  • Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S. (2014). The tumor suppressor PTEN interacts with p53 in hereditary cancer. International Journal of Oncology 44 (6): 1813-1819. doi: 10.3892/ijo.2014.2377
  • Navarro E, Serrano-Heras G, Castano MJ, Solera J (2015). Real-time PCR detection chemistry. International Journal of Clinical Chemistry and Diagnostic Laboratory Medicine 439 (2015): 231-250. doi: 10.1016/j.cca.2014.10.017
  • Nijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123 (5): 773-786. doi: 10.1016/j. cell.2005.11.007
  • Ohta T, Fukuda M (2004). Ubiquitin and breast cancer. Oncogene 23 (11): 2079-2088. doi: 10.1038/sj.onc.1207371 Oren M (2003). Decision making by p53: life, death and cancer. Cell Death and Differentiation 10 (4): 431-442. doi: 10.1038/ sj.cdd.4401183
  • Pal A, Donato NJ (2014). Ubiquitin-specific proteases as therapeutic targets for the treatment of breast cancer. Breast Cancer Research 16 (5): 461. doi : 10.1186/s13058-014-0461-3
  • Parrales A, Iwakuma T (2015). Targeting oncogenic mutant p53 for cancer therapy. Frontiers in Oncology 5: 288. doi: 10.3389/ fonc.2015.00288
  • Siegel RL, Miller KD, Jemal A (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70 (1): 7-30. doi: 10.3322/ caac.21590
  • Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005). Molecular evolution of breast cancer. The Journal of Pathology 205 (2): 248-254. doi: 10.1002/path.1691
  • Song MS, Song SJ, Kim SY, Oh HJ, Lim DS (2008). The tumour suppressor RASSF1A promotes MDM2 self‐ubiquitination by disrupting the MDM2–DAXX–HAUSP complex. The EMBO Journal 27 (13): 1863-1874. doi: 10.1038/emboj.2008.115
  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138 (2): 389-403. doi: 10.1016/j.cell.2009.04.042
  • Tavana O, Sun H, Gu W (2018). Targeting HAUSP in both p53 wildtype and p53-mutant tumors. Cell Cycle 17 (7): 823-828. doi: 10.1080/15384101.2018.1456293
  • Wang M, Zhang Y, Wang T, Zhang J, Zhou Z et al. (2017). The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell Physiology Biochemistry 43 (5): 1755-1766. doi: 10.1159/000484062
  • Wang Q, Ma S, Song N, Li X, Liu L et al. (2016). Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. The Journal of Clinical Investigation 126 (6): 2205-2220. doi: 10.1172/JCI85747
  • Wang Z (2019). USP7: novel drug target in cancer therapy. Frontiers in Pharmacology 10 (2019): 427. doi: 10.3389/fphar.2019.00427
  • Weiswald LB, Dominique B, Virginie DM (2015). Spherical cancer models in tumor biology. Neoplasia 17(1): 1-15. doi: 10.1016/j. neo.2014.12.004
  • Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S et al. (2008). Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Research and Treatment 10 (4): 1-11. doi: 10.1186/bcr2124
  • Xia X, Liao Y, Huang C, Liu Y, He Jo et al. (2019). Deubiquitination and stabilization of estrogen receptor α by ubiquitin-specific protease 7 promotes breast tumorigenesis. Cancer Letters 465: 118-128. doi: 10.1016/j.canlet.2019.09.003
  • Yoshimura T, Hamada T, Hijioka H, Souda M, Hatanaka K et al. (2016). PCP4/PEP19 promotes migration, invasion and adhesion in human breast cancer MCF-7 and T47D cells. Oncotarget 7 (31): 49065. doi: 10.18632/oncotarget.7529
  • Yu S, Kim T, Yoo KH, Kang K (2017). The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochemical and Biophysical Research Communications 486 (3): 752-758. doi: 10.1016/j.bbrc.2017.03.114