Türkiye’deki Lagenaria siceraria gen Kaynaklarının Karpuz İçin Anaçlık Potansiyeli: Bitki Gelişimi, Aşı tutma ve Fusarium’a Dayanıklılık

Türkiye’nin su kaba¤› (Lagenaria siceraria) genetik kaynaklar›n›n karpuz için anaçl›k potansiyeli araflt›r›lm›flt›r. Çal›flma için morfolojik karakterlere göre 210 genotip aras›ndan 72 su kaba¤› genotipi seçilmifltir. ‹ki tane ticari anaç da karfl›laflt›rma amac› ile kullan›lm›flt›r. Afl› tutma oran›n› belirleme çal›flmas›nda kalem olarak Crimson Tide karpuz çeflidi kullan›lm›flt›r. Afl› kombinasyonlar›nda ç›k›fltaki homojenlik, hipokotil morfolojisi, afl› tutuma oran› ve Fusarium oxysporum f. sp. niveum (FON)’a dayan›kl›l›k belirlenmifltir. Ayr›ca, afl›lanm›fl bitkiler, anaçlar›n bitki geliflimine etkilerini araflt›rmak için saks›larda 3 hafta süreyle yetifltirilmifltir. Yaprak say›s›, bitki kuru a¤›rl›¤› ve kök kuru a¤›rl›¤› tespit edilmifltir. Fide ç›k›fl›ndaki homojenlik % 72 ile % 100 aras›nda de¤iflmifltir. En yüksek afl› tutma oaran› % 99, en düflük afl› tutuma oran› ise % 70 olarak tespit edilmifltir. Afl›lanm›fl olan bitkiler kontrol bitkilerine oranla daha iyi geliflme göstermifllerdir. Bütün su kaba¤› genotipleri FON’un üç ›rk›na da dayan›kl› bulunmufltur. Su kaba¤› genotiplerinden dokuzunda sararma gözlenmifl, ancak yap›lan inceleme sonucunda sararman›n FON’dan kaynaklanmad›¤› belirlenmifltir. FON’un üç ›rk›na duyarl› olan Crimson Sweet karpuz çeflidi, yüksek afl› tutma oran› gösteren 10 su kaba¤› genotipi üzerine, anac›n FON’a dayan›kl›l›k üzerindeki etkisini araflt›rmak için afl›lanm›flt›r. Afl›lanm›fl bitkilerin hepsi FON’a dayan›kl› bulunurken, afl›lanmam›fl bitkiler FON’un 3 ›rk›na da duyarl› bulunmufllard›r. Sonuçlar, Türkiye su kaba¤› genetik kaynaklar›n›n karpuz için Fusarium’a karfl› güçlü bir anaç potansiyeline sahip oldu¤unu ve ›slah programlar› için iyi bir kaynak oldu¤unu göstermifltir

Rootstock Potential of Turkish Lagenaria siceraria Germplasm for Watermelon: Plant Growth, Graft Compatibility, and Resistance to Fusarium

The rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon was evaluated. Among 210 accessions, 72 genotypes were selected based on morphological characteristics. Two commercial hybrid rootstocks were also used for comparison. Crimson Tide watermelon cultivar was used as a scion. Emergence rate, hypocotyl morphology, survival rate, and resistance to Fusarium oxysporum f. sp. niveum (FON) were investigated. Grafted plants were grown for 3 weeks in order to investigate the effect of rootstocks on plant growth. Leaf number, shoot dry weight, and root dry weight were determined. Emergence rate was ranked between 72% and 100% in collected genotypes. The highest graft compatibility was 99% while the lowest graft compatibility was 70%. All the grafted plants showed better performance than control plants regarding plant growth. All bottle gourd genotypes were tested against known 3 races of FON and all of them showed resistance against it. However, 9 genotypes showed yellowing but reisolation from those plants showed that yellowing was not due to FON. Crimson Sweet watermelon cv. susceptible to 3 races of FON was grafted onto 10 Lagenaria siceraria genotypes with the highest graft compatibility with watermelon. While all grafted plants showed resistance to FON, ungrafted Crimson Sweet watermelon cv. was found susceptible to 3 races of FON. The results showed that Turkish L. siceraria germplasm has powerful rootstock potential for watermelon against Fusarium wilt and it is a good resource for rootstock breeding programs.

___

  • Atasayar, A. 2006. Türkiye’de aşılı karpuz fidesi kullanımı. Hasad, 21: 87-91.
  • Biles, C.I., R.D. Martyn, and H.D. Wilson. 1989. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience 24: 810-812.
  • Bletsos, F., C. Thanassoulopoulos and D. Roupakias. 2003. Effect of grafting on growth, yield and Verticillium wilt of Eggplant. HortScience 32: 183-186.
  • Bulder, H.A.M., P.R. van Hasselt, P.J.C. Kuiper, E.J. Speek and A.P.M. den Nijs. 1990. The effect of low root temperature in growth and lipid composition of low tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138: 661-666.
  • Cohen, S. and A. Noar. 2002. The effect of three rootstocks on water use canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell Environ. 25: 17-28.
  • Colla, G., Y. Roupahel and M. Cardarelli. 2006. Effect of salinity on yield, fruit quality, leaf gas exchange and mineral composition of grafted watermelon plants. HortScience 41: 622-627.
  • Decker, D.S., M. Wilkins, S.M. Chung and E. Staub. 2004. Discovery and genetic assessment of wild bottle gourd [Lagenaraia siceraria (Mol.) Standley; Cucurbitaceae] from Zimbabwe. Economic Botany 58: 501-508.
  • Den Nijs, A.P.M and L. Smeets, 1987. Analysis of difference in growth of cucumber genotypes under low light conditions in relation to night temperature. Euphytica 36: 19-32.
  • FAO, 2005. FAO Statistical Database, www.fao.org.
  • Kato, N. and S. Ogiwara. 1989. Studies on the properties of the growth, the nutrient uptake and photosynthesis of the grafted melons. Bull. Chiba Agric. Exp. Stn. 21: 119-129.
  • Kurt, S., S. Derviş, E.M. Soylu, M.F. Tok, B. Baran, S. Soylu and H. Yetişir. 2005. Prevalence and pathogenicity of the causal agents of watermelon wilt disease in Eastern Mediterranean and Southeastern Anatolian Regions, IV. GAP Agricultural Congress, Vol 2, pp 1385-1388.
  • Lecoq, H., D. Blancard, F. Nicot, A. Glangard, P.M. Molot and P. Mas. 1991. Techniques d’Inoculation Artificielle du Melon avec Différents Agents Pathogénes pour la Séléction de Variétiés Résistantes. INRA, Monfavet, France.
  • Lee. J.M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods and benefits. HortScience 29: 235-239.
  • Lee J.M. and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews 28: 61-124
  • Leoni, S., M. Grudina, B. Madeddu and M.G. Carletti, 1990. The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Horticulturae 287: 127-134.
  • Lopez-Galarza, S.A., D.M. San Bautista, D.M. Perez, A. Miguel, C. Baixauli, B. Pascual, J.V. Maroto and J.L. Guardiola. 2004. Effect of grafting and cytokinin induced fruit setting on color and sugar- content traits in glasshouse-grown triploid watermelon. J. Hort. Sci. Biotechnol. 79: 971-976.
  • McCreight, J.D., H. Nerson and R. Grumet. 1993. Melon (Cucumis melo L.). In: Kallo, G., Bergh B.O. (Eds), Genetic Improvement of Vegetable Crops. Pergamon Press, Ltd., pp. 267-283.
  • Messiaen, C.M. 1974. Le Potager Tropical (1- généralités). Agence de Coop., Culturelle et Technique Publ., Paris – France.
  • Miguel, A., J.V. Maroto, A. San Bautista, C. Baixauli, V. Cebolla, B. Pascual, S. Lopez and J.L. Guardiola. 2004 The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hortic. 103: 9-17.
  • Oda M, K. Tsuji and H. Sasaki. 1993. Effect of hypocotyl morphology on survival rate and growth of cucumber seedling grafted on Cucurbita spp. JARQ 26: 259-263.
  • Oda, M. 1995. New grafting methods for fruit–bearing vegetables in Japan. JARQ, 29: 187-198.
  • Pulgar, G., G. Villora, D.A. Moreno and L. Romero. 2000. Improving the mineral nutrition in grafted watermelon plants; nitrogen metabolism. Boil. Plant. 43: 607-609.
  • Rivero, R.M., J.M. Ruiz, E. Sanchez and L. Romero. 2003. Does grafting provide tomato plants and advantages against H2O2 production under conditions of thermal shock? Physiol. Plant. 117: 44-50.
  • Romero, L., A. Belakbir, L. Ragala and M. Ruiz. 1997. Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.) Soil Sci. Plant Nutr. 43: 855-862.
  • Ruiz, J.M., A. Belakbir, A. Lopez-Cantarero and L. Romero. 1997. Leaf macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstocks to genotype. Sci. Hortic. 71: 113-123.
  • Ruiz J.M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Sci. Hortic. 81: 113-123.
  • Tindall, H.D. 1983. Vegetables in the Tropics. Macmillan International College Edition, Macmillan Press, London, 1983.
  • Yetişir, H. and N. Sarı. 2003. Effect of different rootstock on plant growth, yield and quality of watermelon. Austr. J. Exper. Agric. 43: 1269-1274.
  • Yetişir, H. and N. Sarı. 2004. Effect of hypocotyl morphology on survival rate and growth of watermelon seedling grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For. 28: 231-237.
  • Yetişir H, N. Sari and S. Yücel. 2003. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 31: 163-169.
  • Zerki, M. and L.R. Parson. 1992. Salinity tolerance of citrus rootstocks: Effect of salt on root and leaf mineral concentrations. Plant and Soil, 147: 171-181.
  • Zijlstra, S., S.P.C. Groot and J. Jansen. 1994. Genetic variation of rootstocks for growth and production in cucumber; possibilities for improving the root system by plant breeding. Sci. Hortic. 56: 185-186.
  • Zhou X.G. and K.L. Everts. 2003. Races and inoculum density of Fusarium oxysporum f. sp. niveum in commercial watermelon fields in Maryland and Delaware. Plant Dis. 87: 692-698.