Mapping secondary forest succession with geographic information systems: A case study from Bulanıkdere, Kırklareli, Turkey

Ormanların sahip olduğu tüm fonksiyonların/değerlerin sürdürülebilirliliğini sağlayacak şekilde orman amenajman planlarını geliştirmek önemli ve zor bir süreçtir. Bu süreçte karşılaşılan zorluklardan biri işletme amaçları ile koruma hedeflerini isabetli olarak belirlemektir. Sürdürülebilir orman planlama ve işletmeciliğinde, kompozisyon ve konfigürasyon açısından hedef orman kuruluşu, alternatif işletme faaliyetlerini belirlemek ve işletme amaçları ile koruma hedeflerini gerçekleştirmek için ortaya konmalıdır. Hedef orman kuruluşunun ortaya konmasında vejetasyondaki süksesyon aşamalarının belirlenmesi önemli rol oynamaktadır. Bu çalışma, biyolojik çeşitliliğin orman amenajman planlarına yansıtıldığı Kırklareli-Bulanıkdere planlama biriminde gerçekleştirilmiştir. Çalışma Dünya Bankası tarafından desteklenen GEF projesinin bir bölümüdür. Sekonder orman süksesyonu aşamaları, 2003 yılında sistematik olarak tespit edilen 639 örnekleme alanında alınan veriler kullanılarak Clements'in yaklaşımına göre belirlenmiştir. Bulanıkdere Planlama Biriminde, Coğrafi Bilgi Sistemi (CBS), Uzaktan Algılama (UA) ve Hava Fotoğrafları (HF) ile süksesyon aşamaları belirlenmiş ve haritaları oluşturulmuştur. Eşleştirilmiş t testi (Paired Samples t), gerçek süksesyon değerleri ile hesaplanan süksesyon değerleri arasında anlamlı bir fark olup olmadığını belirlemek için uygulanmıştır. Bu iki yöntem arasında istatistiksel olarak anlamlı bir fark olmadığı % 95 güven düzeyinde ortaya konulmuştur. Elde edilen sonuçlar ormanın klimaks aşamasına doğru gittiğini göstermektedir. Tüm alan süksesyon açısından değerlendirildiğinde, rekabet aşamasındaki alanın oranı % 70.1 iken başlangıç, göç ve yerleşme aşamasındaki alanların toplamı ise sadece % 2.8'dir. Bu sonuçlar alanda antropojenik etkinin varlığını ve farklı üretim tekniklerinin kullanıldığını ortaya koymaktadır. Kesilmeyen ya da zarar görmüş bireyler tek ağaç işletme şeklinde izleyen sekonder orman süksesyonu aşamalarının temel bileşenlerini oluşturabilir. Sayısal veri tabanları; vejetasyonda meydana gelen değişimleri anlamaya imkan sunmakta ve biyolojik çeşitliliğin devamını sağlayacak şekilde optimal karar vermede planlayıcılara yardımcı olmaktadır.

Coğrafi Bilgi sistemleri yardımıyla sekonder orman süksesyonunun haritalanması: bulanıkdere, Kırklareli örneği

Developing forest management plans for sustaining the full range of forest values is a challenging task. One of the difficulties in this process is to set and achieve management objectives, and conservation targets. A sustainable forest management concept requires that a target forest structure (the composition and the configuration) be set before developing alternative management actions for the achievement of management objectives and the conservation targets. In this respect, developing and understanding vegetation succession play important roles in setting the target forest conditions. This study was conducted in the Bulanıkdere Forest planning unit (Kırklareli, Turkey) where the biodiversity-integrated multiple-use forest management planning process is conducted as part of the GEF project. The serai stages of secondary forest succession were determined according to Clements's succession theory by using 639 systematically distributed sample plots in the planning unit in 2003. The secondary forest succession was generated and mapped using a geographic information system (GIS) and remote sensing (RS), along with aerial photographs. The paired samples t-test was used to determine whether or not there were significant differences between estimated and calculated succession values. The difference was not statistically significant at a 95% confidence level. The results indicated that the forest has developed towards the climax stage. Around 70.1% of the area is in the competition stage, while the areas in the nudation, migration, and ecesis stages account for about 2.8%. Results show that anthropogenic disturbances and harvesting techniques have been the major causes of the succession. Under a selective harvesting regime, the trees left uncut or damaged would become the main components of the subsequent forest succession. The spatial database offers excellent opportunities to understand the vegetation dynamics and to help the forest manager in deciding future forest conditions for maintaining biodiversity.

___

  • Aranoff, S. 1989. Geographic Information Systems: A Management Perspective. WDL Publications, Canada.
  • Ba şkent, E.Z. and H.A. Yolasığmaz. 1999. Forest landscape (ecosystems) management revisited. Environ. Manage. 24: 437-448.
  • Ba şkent, E.Z., S. Köse, Z. Kaya, L. Altun, S. Terzioğlu and Ş. Başkaya. 2004. GEF II, Biyoçeşitlilik ve Doğal Kaynak Yönetimi Türkiye'de Biyoçeşitliliğin Orman Amenajman Planlarına Entegrasyonu Strateji ve Tasarımın Geliştirilmesi. Son Rapor. 59.
  • Başkent, E.Z., S. Köse, L. Altun, S. Terzioğlu and Ş. Başkaya. 2005. Biyolojik çeşitliliğin orman amenajman planlarıyla bütünleştirilmesi: GEF projesi yansımaları - 1 (Tasarım). Orman Mühendisliği Dergisi. Sayı 4-5-6-7-8-9.
  • Bischoff, W., D.M. Newbery, M. Lingenfelder, R. Schnaeckel, G.H. Petol, L. Madani and C.E. Ridsdale. 2005. Secondary succession and dipterocarp recruitment in Bornean rain forest after logging. Forest Ecol. Manag. 218: 174-192.
  • Blatt, S.E., A. Crowder and R. Harmsen. 2005. Secondary succession in two South-eastern Ontario old-fields. Plant Ecol. 177: 25-41.
  • Bonet, A. and J.G. Pausas. 2004. Species richness and cover along a 60-year chronosequence in old-fields of southern Spain. Plant Ecol. 174: 257-270.
  • Botkin, D.B. and E.A. Keller. 1995. Environmental Science. Wiley, New York. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd ed. Springer, Wien, New York.
  • Bunnell, F.L. and D.J. Huggard. 1999. Biodiversity across spatial and temporal scales: problems and opportunities. Forest Ecol. Manag. 115:113-126.
  • Cain, M.D. and M.G. Shelton. 2001. Secondary forest succession following reproduction cutting on the Upper Coastal Plain of southeastern Arkansas, USA. Forest Ecol. Manag. 146: 223-238.
  • Clements, F.E. 1916. Plant Succession, Carnegie Institute Washington Publication, Washington, D.C.
  • Clements, F.E. 1936. Nature and structure of climax. J. Ecol. 24: 252-284.
  • Cohen, W.B., T.A. Spies, RJ. Alig, D.R. Oetter, T.K. Maiersperger and M. Fiorella. ^002. Characterizing 23 years (1972-95) of stand replacement disturbance in western Oregon forests with Landsat imagery. Ecosystems. 5. 122-137.
  • Date, CJ. 1999. An Introduction to Database Systems, 7th ed. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
  • Davis, W.M. 1899. The geographical cycle. Geogr. J. 14: 481-504.
  • Davis, M.A., L. Bier, E. Bushelle, C. Diegel, A. Johnson and B. Kujala. 2005. Non-indigenous grasses impede woody succession. Plant Ecol. 178: 249-264.
  • Efendio ğlu, M. and T. Zık. 1993. Ülkemizde orman amenajmanı. 1. Ormancılık Şurası Tebliğleri. Ankara, Cilt: 3. pp.76-88.
  • Elliott, K.J., L.R. Boring, W.T. Swank and B.R. Haines. 1997. Successional changes in plant species diversity and composition after clearcutting a Southern Appalachian watershed. Forest Ecol. Manag. 92: 67-85.
  • Fernandez, J.B.G., M. Rosario, R.G. Mora and F.G. Novo. 2004. Vegetation dynamics of Mediterranean shrublands in former cultural landscape at Grazalema mountains south Spain. Plant Ecol. 172: 83-94.
  • Finegan, B. 1984. Forest succession. Nature. 312: 109-114
  • Gleason, H.A. 1926. The individualistic concept of plant association. Bulletin of the Torrey Botanical Club. 53: 79-89.
  • Glenn-Lewin, D.C, R.K. Peet and T.T. Veblen. 1992. Plant Succession. Chapman and Hall, London.
  • Harmer, R., G. Peterken, G. Kerr and P. Poulton. 2001. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol. Conserv. 101: 291-304.
  • Jia, C.G., J. Cao, C. Wang and G. Wang. 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecol. Manag. 217: 117-125.
  • Kaya, Z. and DJ. Raynal. 2001. Biodiversity and conservation of Turkisîı forests. Biol. Conserv. 97: 131-141.
  • Kennard, D.K. 2002. Secondary forest succession in a tropical dry forest: Patterns of development across a 50-year chronosequence in lowland Bolivia. J. Trop. Ecol. 18: 53-66.
  • Kienast, F., J. Fritschi, M. Bissegger and W. Abderhalden. 1999. Modeling successional patterns of high-elevation forests under changing herbivore pressure responses at the landscape level. Forest Ecol. Manag. 120: 35-46.
  • Kojima, S. 1981. Biogeoclimatic ecosystem classification and its practical use in forestry. Journal of College of Liberal Arts. Toyama Univ. 14:41-75.
  • Köse, S. and E.Z. Başkent. 1996. Thirty year history of even-aged management: what have we learned from Turkey? Journal of Sustainable Forestry. 5: 15-26.
  • Kubota, Y., K. Katsuda and K. Kikuzawa. 2005. Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan. Biodivers. Conserv. 14: 879-901.
  • Lindenmayer, D.B. 1999. Future directions for biodiversity conservation in managed forests: indicator species, impact studies and monitoring programs. Forest Ecol. Manag. 115: 277-287.
  • Lorimer, C.G., L.E. Frelich and E.V. Nordheim. 1988. Estimating gap origin probabilities for canopy trees. Ecology. 69. 778-785.
  • Menini, U.G. 1998. Policy issues for the conservation and utilization of horticultural genetic resources for food and agriculture. Acta Hort 495:211-232.
  • Mika, A. 2004. The importance of biodiversity in natural environment and in fruit plantations. Journal of Fruit and Ornamental Plant Research. 12: 11-21.
  • Moir, M.L., K.E.C. Brennan, J.M. Koch, J.D. Majer and MJ. Fletcher. 2005. Restoration of a forest ecosystem: The effects of vegetation and dispersal capabilities on the reassembly of plant-dwelling arthropods. Forest Ecol. Manag. 217: 294-306.
  • Noss, R. 1999. Assessing and monitoring forest biodiversity: A suggested framework and indicators. Forest Ecol. Manag. 115: 135-146.
  • Odum, E.P. 1969. The strategy of ecosystem development. Science. 164: 262-270.
  • Pena-Claros, M. 2001. Secondary Forest Succession: Processes Affecting the Regeneration of Bolivian Tree Species. PR0MAB Scientific Series 3. Netherlands.
  • Pickett, S.T.A. 1976. Succession: an evolutionary interpretation. Am. Nat. 110: 107-109.
  • Risch, A.C., M. Schütz, B.Ö. Krüsi, F. Kienast, 0. Wildi and H. Bugmann. 2004. Detecting successional changes in long-term empirical data from subalpine conifer forests. Plant Ecol. 172: 95-105.
  • Runkle, J.R. 1981. Gap regeneration in some old-growth forests of the eastern United States. Ecology. 62: 1041 -1051.
  • Said, S. 2001. Floristic and life form diversity in post-pasture successions on a Mediterranean island (Corsica). Plant Ecol. 162: 67-76.
  • Sarmiento, L, L.D. Llambî, A. Escalona and N. Marquez. 2003. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166: 63-74.
  • Simberloff, D. 1999. The role of science in the preservation of forest biodiversity. Forest Ecol. Manag. 115: 101-111
  • Song, C. and C.E. Woodcock. 2002. The spatial manifestation of forest succession in optical imagery the potential of multiresolution imagery. Remote Sens. Environ. 82: 271-284.
  • Stojchev, G., A. Asan and F. Giicin. 1998. Some macrofungi species of European part of Turkey. Tr. J. of Botany. 22: 341-346.
  • Terzio ğlu/S. 2004. Bitkisel tür çeşitliliğinin saptanmasında Braun-Blanquet yönteminin değerlendirilmesi. KTÜ Orman Fakültesi Güz Yarıyılı Seminerleri. 8: 81-88.
  • Thomas, K., B.D. Anderson and R. Hunt. 2003. Petrified Forest National Park-Weed Inventory and Mapping Project. Annual Report FY 2002. U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, p. 52.
  • Turner M.G., D.N. Wear and R.O. Flamm. 1996. Land ownership and land-cover change in the Southern Appalachian Highlands and the Olympic Peninsula. Ecol. Appl. 6: 1150-1172.
  • Uotila, A. and J. Kouki. 2005. Understorey vegetation in spruce-dominated forests in eastern Finland and Russian Karelia: Successional patterns after anthropogenic and natural disturbances. Forest Ecol. Manag. 215: 113-137.
  • Usher, M.B. 1992. Statistical models of succession, In: Plant succession. Theory and Prediction. (Eds., D.C. Glenn-Lewin., R.K. Peet and T.T. Veblen), Chapman and Hall, London, UK.
  • Ustin, S.L. and Q.F. Xiao. 2001. Mapping successional boreal forest in interior central Alaska. Int. J. Remote Sens. 22: 1779-1797.
  • Wang, D.P., S.Y. Ji, F.P. Chen, F.W. Xing and S.L. Peng. 2006. Diversity and relationship with succession of naturally regenerated southern subtropical forests in Shenzen, China and its comparison with the zonal climax of Hong Kong. Forest Ecol. Manag. 222, 384-390.
  • Watt, A.S. 1947. Patterns and processes in the plant community. J. Ecol. 35: 1-22.
  • Wear, D.N., M.G. Turner and R.O. Flamm. 1996. Ecosystem management with multiple owners: Landscape dynamics in a southern Appalachian watershed. Ecol. Appl. 6: 1173-1188.
  • Whittaker, R.H. 1975. Communities and Ecosystems. MacMillian, New York. p. 385.
  • Zhuang, X.Y. and R.T. Corlett. 1997. Forest and forest succession in Hong Kong. China. J. Trop. Ecol. 14: 857-866.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Methyl bromide alternatives for controlling meloidogyne incognita in pepper cultivars in the Eastern Medtirranean Region of Turkey

İbrahim Halil ELEKÇİOĞLU, Mehmet Ali SÖĞÜT

Indirect Organogenesis in Summer Squash (Cucurbita pepo L.)

Shakti Prosad PAL, İftekhar ALAM, M. ANİSUZZAMAN, Kanak Kanti SARKER

Mapping secondary forest succession with geographic information systems: A case study from Bulanıkdere, Kırklareli, Turkey

Turan SÖNMEZ, Salih TERZİOĞLU, Fatih SİVRİKAYA, Hacı Ahmet YOLASIĞMAZ, Günay ÇAKIR, Emin Zeki BAŞKENT

Mating Type Groups of Ascochyta rabiei (Teleomorph: Didymella rabiei), the Causal Agent of Chickpea Blight in Central Anatolia

Harun BAYRAKTAR, F. Sara DOLAR, Salih MADEN

Growth and Stomatal Behaviour of Two Strawberry Cultivars under Long-Term Salinity Stress

Ece TURHAN, Atilla ERİŞ

Determination of Water Conveyance Loss in the Menemen Open Canal Irrigation Network

Erhan AKKUZU, Halil Baki ÜNAL, Bekir Sıtkı KARATAŞ

Methyl Bromide Alternatives for Controlling Meloidogyne incognita in Pepper Cultivars in the Eastern Mediterranean Region of Turkey

Mehmet Ali SÖĞÜT, İbrahim Halil ELEKÇİOĞLU

The Effects of Different Irrigation Systems on the Inundative Release of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) against Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae) in the Second Crop Maize

Sevcan ÖZTEMİZ, Serpil KORNOŞOR

Mating type groups of Ascochyta rabiei (Teleomorph: Didymella rabiei), the cusal agent of chickpea blight in central anatolia

Harun BAYRAKTAR, Salih MADEN, F. Sara DOLAR

Coğrafi Bilgi Sistemleri Yardımıyla Sekonder Orman Süksesyonunun Haritalanması: Bulanıkdere, Kırklareli Örneği

Günay ÇAKIR, Fatih SİVRİKAYA, Salih TERZİOĞLU, Emin Zeki BAŞKENT