Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts

Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts

In this study, sweetened black and green tea were utilized as substrate for kombucha fermentation. Linden, lemon balm, sage, echinacea, mint, and cinnamon infusions were added to kombucha to design a novel beverage with Unproved functional and organoleptic characteristics. After fermentation, the antioxidant capacity (AC) of the kombucha increased by 13.96% 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 48.90% ferric reducing antioxidant power (FRAP), and 55.54% cupric reducing AC (CUPRAC). On days 0 and 9 of storage, the bioaccessibility of the total phenolics and AC (FRAP and CUPRAC) in all of the samples showed a significant increase after gastric and intestinal digestion when compared to pregastric digestion (P < 0.05). The AC (DPPH) after in vitro digestion at the beginning and end of storage in all of the beverages also increased after gastric digestion when compared to pregastric digestion (P < 0.05); however, it decreased after intestinal digestion (P < 0.05). By conducting in vitro and in vivo studies, the effects of kombucha on health and nutrition need to be further investigated.

___

  • Abuduaibifu A, Tamer CE (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation 43 (9): e14077. doi: 10.1111/jfpp.14077
  • Adegbola P, Aderibigbe I, Hammed W, Omotayo T (2017). Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. American Journal of Cardiovascular Disease 7 (2): 19- 32.
  • Alminger M, Aura AM, Bohn T, Dufour C, El SN et al. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13 (4): 413-436. doi: 10.1111/1541-4337.12081
  • Altuğ T (1993). Duyusal test teknikleri. Yayın No: 28, İzmir (in Turkish). Amarasinghe H, Weerakkody NS, Waisundara VY (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation. Food Science & Nutrition 6: 659-665. doi: 10.1002/fsn3.605
  • Anonymous (2004). TS EN 13805:2004. Turkish Standard. Foodstuffs - Determination of trace elements - Pressure digestion.
  • AOAC(2000).Official methods of analysis of AOAC. International 17th edition. Gaithersburg, MD: Association of Analytical Communities.
  • Apak R, Güçlü K, Özyürek M, Çelik SE (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta 160: 413-419. doi: 10.1007/s00604-007-0777-0.
  • Ayed L, Hamdi M (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology65: 2293-2299. doi: 10.1007/s13213-015-1071-8
  • Ayed L, Abid SB, Hamdi M (2017). Development of a beverage from red grape juice fermented with the kombucha consortium. Annals of Microbiology 67: 111-121. doi: 10.1007/s13213-016- 1242-2
  • Bakker J, Bridle P, Timberlake CF (1986). Tristimulus measurements (CIELAB 76) of port wine colour. Vitis, 25: 67-78.
  • Baschali A, Tsakalidou E, Kyriacou A, Karavasiloglou N, Matalas AL (2017). Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutrition Research Reviews 30 (1): 1-24. doi: 10.1017/ S0954422416000202
  • Battikh H, Chaieb K, Bakhrouf A, Ammar E (2012a). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry 37: 231-236. doi: 10.1111/j.1745- 4514.2011.00629.x
  • Battikh H, Bakhrouf A, Ammar E (2012b). Antimicrobial effect of kombucha analogues. LWT- Food Science and Technology 47: 71-77. doi: 10.1016/j.lwt.2011.12.033
  • Bauer-Petrovska B, Petrushevska-Tozi L (2000). Mineral and water soluble vitamin content in the kombucha drink. International Journal of Food Science & Technology 35: 201-205. doi: 10.1046/j.1365-2621.2000.00342.x
  • Bellassoued K, Ghrab F, Makni-Ayadi F, Pelt JV, Elfeki A et al. (2015). Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharmaceutical Biology 53 (11): 1699-1709. doi: 10.3109/13880209.2014.1001408
  • Benzie IFF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry239: 70-76. doi: 10.1006/ abio.1996.0292
  • Bermudez-Soto MJ, Tomas-Barberan FA, Garcia-Conesa MT (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry 102: 865-874. doi: 10.1016/j.foodchem.2006.06.025
  • Bhattacharya S, Manna P, Gachhui R, Sil PC (2011). Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes. Indian Journal of Experimental Biology 49(7): 511-524.
  • Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S et al. (2016). Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Current Microbiology 73: 885-896. doi: 10.1007/s00284-016-1136-3
  • Bouayed J, Hoffmann L, Bohn T (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chemistry 128: 14- 21 doi: 10.1016/j.foodchem.2011.02.052.
  • Bruno FA, Lankaputhra WEV, Shah NP (2002). Growth, viability and activity of Bifidobacterium spp. in skim milk containing prebiotics. Journal of Food Science 67 (7): 2740-2744. doi: 10.1111/j.1365-2621.2002.tb08807.x
  • Cavusoglu K, Guler P (2010). Protective effect of kombucha mushroom (KM) tea on chromosomal aberrations induced by gamma radiation in human peripheral lymphocytes in-vitro. Journal of Environmental Biology 31: 851-856.
  • Chakravorty S, Sarkar S, Gachhui R (2015). Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family. Molecular Biology49: 749-759. doi: 10.1134/S0026893315050052
  • Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D et al. (2016). Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72. doi: 10.1016/j. ijfoodmicro.2015.12.015
  • Chakravorty S, Bhattacharya S, Bhattacharya B, Sarkar S, Gachhui R (2019). Kombucha: a promising functional beverage prepared from tea. In: Grumezescu AM, Holban AM (editors). NonAlcoholic Beverages. United Kingdom: Elsevier, pp. 285-327.
  • Chen C, Liu BY (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89 (5): 834-839. doi: 10.1046/j.1365- 2672.2000.01188.x
  • Chu S, Chen C (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry 98 (3): 502–507. doi: 10.1016/j.foodchem.2005.05.080
  • Coton M, Pawtowski A, Taminiau, B, Burgaud G, Deniel F et al. (2017). Unraveling microbial ecology of industrial-scale kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecologydoi: 10.1093/femsec/ fix048
  • Deghrigue M, Chriaa J, Battikh H, Abid K, Bakhrouf A (2013). Antiproliferative and antimicrobial activities of kombucha tea. African Journal of Microbiology Research 7: 3466-3470. doi: 10.5897/AJMR12.1230
  • Değirmencioğlu N, Yıldız E, Şahan Y, Güldaş M, Gürbüz O (2019). Fermentasyon süresinin kombu çayı mikrobiyotası ve canlılık oranları üzerine etkileri. Akademik Gıda 17 (2): 200-211 (in Turkish). doi: 10.24323/akademik-gida.613567
  • Dias FO, Shenoy CK (2016). Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds. International Journal of Science and Research 5 (3): 945-948.
  • Dufresne C, Farnworth E (2000). Tea, kombucha, and health: a review. Food Research International 33: 409-421. doi: 10.1016/ S0963-9969(00)00067-3
  • Dutta D, Gachhui R (2006). Novel nitrogen-fixing Acetobacter nitrogenifigens sp nov, isolated from kombucha tea. International Journal of Systematic and Evolutionary Microbiology 56: 1899- 1903. doi: 10,1099 / ijs.0.64101-0
  • Dutta D, Gachhui, R (2007). Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp nov, isolated from Kombucha tea. International Journal of Systematic and Evolutionary Microbiology 57: 353-357. doi: 10,1099 / ijs.0.64638-0
  • Dwiputri MC, Lauda Feroniasanti YM (2019). Effect of fermentation to total titrable acids, flavonoid and antioxidant activity of butterfly pea kombucha. Journal of Physics: Conference Series 1241: 012014. doi: 10.1088/1742-6596/1241/1/012014
  • Elkhtab E, El-Alfy M, Shenana M, Mohamed A, Yousef AE (2017). New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Journal of Dairy Science 100 (12): 9508- 9520. doi: 10.3168/jds.2017-13150
  • Espin JC, Selma MV, Tomas-Barberan FA (2009). Interaction between phenolics and gut microbiota: role in human health. Journal of Agricultural and Food Chemistry 57 (15): 6485- 6501. doi: 10.1021/jf902107d
  • Fu C, Yan F, Cao Z, Xie F, Lin J (2014). Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology (Campinas) 34 (1): 123-126. doi: 10.1590/ S0101-20612014005000012
  • Gaggìa F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR et al. (2019). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 11 (1): 1. doi: 10.3390/ nu11010001
  • Gamboa‐Gómez CI, González‐Laredo RF, Gallegos‐Infante JA, Pérez MML, Moreno‐Jiménez MR et al. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology 54 (3): 367-374. doi: 10.17113/ftb.54.03.16.4622
  • Granato D, Calado VMDA, Jarvis B (2014). Observations on the use of statistical methods in food science and technology. Food Research International55: 137-149. doi: 10.1016/j. foodres.2013.10.024
  • Greenwalt CJ, Ledford RA, Steinkraus KH (1998). Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT- Food Science and Technology 31 (3): 291-296. doi: 10.1006/fstl.1997.0354
  • Guven O, Sensoy I, Senyuva H, Karakaya S (2018). Food processing and digestion: the effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. LWTFood Science and Technology 90: 232-237. doi: 10.1016/j. lwt.2017.12.042
  • Güldane M, Bayram M, Topuz S, Kaya C, Gök HB et al. (2017). Determination of some properties in kombucha produced with white, black and green tea. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 34 (1): 46-56. doi: 10.13002/jafag1101
  • Heim KE, Tagliaferro AR, Bobilya DJ (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry 13 (10) 572-584. doi: 10.1016/S0955-2863(02)00208-5
  • Hollman P, Van TJ, Buysman M, Gaag M, Mengelers M et al. (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Letters 418 (1-2): 152-156. doi: 10.1016/S0014-5793(97)01367-7
  • Horasan Sağbasan B (2015). Investigating the bioaccesibility of antioxidants in dried red fruits commonly consumed in Turkey. MSc, Istanbul Technical University, İstanbul, Turkey.
  • Huang WY, Cai YZ, Zhang Y (2010). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and Cancer 62 (1): 1-20. doi: 10.1080/01635580903191585
  • Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chemistry 90: 613-620. doi: 10.1016/j.foodchem.2004.04.021
  • Jayabalan R, Marimuthu S, Swaminathan K (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102 (1): 392-398. doi: 10.1016/j.foodchem.2006.05.032
  • Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. (2014). A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13: 538-550. doi: 10.1111/1541-4337.12073
  • Kamiloglu S, Ozkan G, Isik H, Horoz O, Van CJ et al. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: an in vitro digestion study with a standardized static model. LWT- Food Science and Technology 77: 475-481. doi: 10.1016/j.lwt.2016.12.002
  • Kamiloglu S (2019). Evaluation of polyphenol bioaccessibility in fresh and frozen apples and apple pomace. Gıda-The Journal of food 44 (3): 409-418. doi: 10.15237/gida.GD19026
  • Khosravi S, Safari M, Emam‐Djomeh Z, Golmakani MT (2019). Development of fermented date syrup using kombucha starter culture. Journal of Food Processing and Preservation 43 (2): e13872. doi: 10.1111/jfpp.13872
  • Koner S, Dash P, Priya V, Rajeswari VD (2019). Natural and artificial beverages: exploring the pros and cons. In: Grumezescu AM, Holban AM (editors). Natural Beverages. United Kingdom: Elsevier, pp. 427-445.
  • Kubilay Z (2014). The antioxidant activity of the fermentation product from fruit juice of watermelon (Citrullus vulgaris) and melon (Cucumis melo) with kombucha mushroom. MSc, Gaziantep University, Gaziantep, Turkey.
  • Kumar SD, Narayan G, Hassarajani S. (2008). Determination of anionic minerals in black and kombucha tea using ion chromatography. Food Chemistry 111 (3): 784-788. doi: 10.1016 / j.foodchem.2008.05.012
  • Kübra, T. (2017). Use of different substrate resources in the production of kombucha tea. MSc, Akdeniz University, Antalya, Turkey.
  • Leal JM, Suárez LV, Jayabalan R, Oros JH, Escalante-Aburto A (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-Journal of Food 16 (1): 390-399. doi: 10.1080/19476337.2017.1410499
  • Malbasa RV (2004). Investigation of antioxidant activity of beverage from tea fungus fermentation. PhD thesis, University of Novi Sad Faculty of Technology, Serbia.
  • Malbasa R, Milanovic S, Loncar E, Djuric M, Caric M et al. (2009). Milk-based beverages obtained by kombucha application. Food Chemistry 112 (1): 178-184. doi: 10.1016/j. foodchem.2008.05.055
  • Marsh AJ, Sullivan OO, Hill C, Ross RP, Cotter PD (2014). Sequencebased analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38: 171-178. doi: 10.1016/j.fm.2013.09.003
  • Minekus M, Alminger M, Alvito P, Ballance S, Bohn T et al. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food and Function 5(6): 1113- 1124. doi: 10.1039/C3FO60702J
  • Moreno‐Jiménez MR, Rocha‐Guzmán NE, Rutiaga‐Quiñones JG, Medrano‐Núñez D, Rojas‐Contreras J. et al. (2018). Polyphenolic profile, sugar consumption and organic acids generation along fermentation of ınfusions from guava (Pisidium guajava) by the kombucha consortium. Recent Research in Science and Technology10: 16-22. doi: 10.25081/ rrst.2018.10.3399
  • Neffe-Skocińska K, Sionek B, Ścibisz I, Kołożyn-Krajewska D (2017). Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA – Journal of Food 15 (4): 601- 607. doi: 10.1080/19476337.2017.1321588
  • Nguyen NK, Nguyen PB, Nguyen HT, Le PH (2015). Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for highlevel production of glucuronic acid. LWT- Food Science and Technology 64 (2): 1149-1155. doi: 10.1016/j.lwt.2015.07.018
  • OIV Method OIV‐MA‐AS2‐11: R2006. (2006). Determination of chromatic characteristics according to CIELab. Compendium of International Analysis of Methods – OIV Chromatic Characteristics (p. 1–16).
  • Rahmani R, Beaufort S, Villarreal-Soto SA, Taillandier P, Bouajil J et al. (2019). Kombucha fermentation of African mustard (Brassica tournefortii) leaves: chemical composition and bioactivity. Food Bioscience 30: 100414 doi: 10.1016/j.fbio.2019.100414
  • Reto M, Figueira ME, Filipe HM, Almeida CMM (2007). Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods for Human Nutrition 62: 139. doi: 10.1007/s11130-007-0054-8
  • Shahbazi H, Gahruie HH, Golmakani MT, Eskandari MH, Movahedi M (2018). Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science and Nutrition 6: 2568- 2577. doi: 10.1002/fsn3.873
  • Shenoy C, Lobo RO, Dias FO (2019). Kombucha (bio-tea): an elixir for life? In: Grumezescu AM, Holban AM (editors). Nutrients in Beverages. United Kingdom, Springer, pp. 591-616.
  • Sievers M, Lanini C, Weber A, Schuler-Schmid U, Teuber M (1995). Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology 18: 590-594. doi: 10.1016/S0723- 2020(11)80420-0
  • Sreeramulu G, Zhu Y, Knol WJ (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry 48: 2589-2594. doi: 10.1021/jf991333m
  • Srihari T, Arunkumar R, Arunakaran J, Satyanarayana U (2013a). Downregulation of signalling molecules involved in angiogenesis of prostate cancer cell line (PC-3) by kombucha (lyophilized). Biomedicine and Preventive Nutrition 3: 53-58. doi: 10.1016/j.bionut.2012.08.001
  • Srihari T, Karthikesan K, Ashokkumar N, Satyanarayana U (2013b). Antihyperglycaemic efficacy of kombucha in streptozotocininduced rats. Journal of Functional Foods 3: 1794-1802. doi: 10.1016/j.jff.2013.08.008
  • Sun TY, Li JS, Chen C (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis 23 (4): 709-718. doi: 10.1016/j.jfda.2015.01.009
  • Suzuki T, Pervin M, Goto S, Isemura M, Nakamura Y (2016). Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21: 1305. doi: 10.3390/molecules21101305
  • Teoh AL, Heard G, Cox J (2004). Yeast ecology of kombucha fermentation. International Journal of Food Microbiology 95: 119-126. doi: 10.1016/j.ijfoodmicro.2003.12.020
  • Tu C, Tang S, Azi F, Hu W, Dong M (2019). Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods 52: 81-89. doi: 10.1016/j. jff.2018.10.024
  • Ulusoy A, Tamer CE (2019). Determination of suitability of black carrot (Daucus carota L. spp. sativus var. atrorubens Alef.) juice concentrate, cherry laurel (Prunus laurocerasus), blackthorn (Prunus spinosa) and red raspberry (Rubus ideaus) for kombucha beverage production. Journal of Food Measurement and Characterization 13: 1524-1536. doi: 10.1007/s11694-019- 00068-w
  • Vázquez-Cabral BD, Larrosa-Pérez M, Gallegos-Infante JA, MorenoJiménez MR, González-Laredo RF et al. (2017). Oak kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions 272: 1-9. doi: 10.1016/j. cbi.2017.05.001
  • Velicanski AS, Cvetkovic DD, Markov SL, Saponjac VTT, Vulic JJ (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology 52 (4): 420-429. doi: 10.17113/ftb.52.04.14.3611
  • Villarreal-Soto SA, Beauforta S, Bouajila J, Soucharda JP, Renard T et al. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry 83: 44-54. doi: 10.1016/j.procbio.2019.05.004
  • Vīna I, Semjonovs P, Linde R, Deniņa I (2014). Current evidence on physiological activity and expected health effects of kombucha fermented beverage. Journal of Medicinal Food 17 (2): 179- 188. doi: 10.1089/jmf.2013.0031
  • Vitali D, Dragojevic IV, Šebecic B (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry 114: 1462-1469. doi: 10.1016/j.foodchem.2008.11.032
  • Vitas JS, Cvetanović AD, Mašković PZ, Švarc‐Gajić, JV, Malbaša RV (2018). Chemical composition and biological activity of novel types of kombucha beverages with yarrow. Journal of Functional Foods 44: 95-102. doi: 10.1016/j.jff.2018.02.019
  • Vohra BM, Fazry S, Sairi F, Othman B (2018). Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of kombucha. Malaysian Journal of Fundamental and Applied Sciences 15 (2-1): 298-302. doi: 10.11113/mjfas.v15n2-1.1536
  • Watawana MI, Jayawardena N, Waisundara VY (2015). Enhancement of the functional properties of coffee through fermentation by “tea fungus” (kombucha). Journal of Food Processing and Preservation 39 (6): 2596-2603. doi: 10.1111/jfpp.12509
  • Watawana MI, Jayawardena N, Gunawardhana CB, Waisundara VY (2016). Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with kombucha ‘tea fungus’. International Journal of Food Science and Technology 51 (2): 490-498. doi: /10.1111/ijfs.13006
  • Yang ZW, Ji BP, Zhou F, Li B, Luo Y et al. (2009). Hypocholesterolaemic and antioxidant effects of kombucha tea in high‐cholesterol fed mice. Journal of the Science of Food and Agriculture 89 (1): 150-156. doi: 10.1002/jsfa.3422
  • Yapar K, Cavusoglu K, Oruc E, Yalcin E (2010). Protective effect of kombucha mushroom (KM) tea on phenol-induced cytotoxicity in albino mice. Journal of Environmental Biology 31 (5): 615-621.
  • Yarbrough E (2017). Kombucha culture: an ethnographic approach to understanding the practice of home-brew kombucha in San Marcos, Texas. PhD thesis, Texas State University, US.
  • Yavari N, Assadi MM, Moghadam MB, Larijani K (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Australian Journal of Basic and Applied Sciences 5 (11): 1788-1794.
  • Zhang D, Hamauzu Y (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry 88: 503-509. doi: 10.1016/j.foodchem.2004.01.065
  • Zhang H, Qi R, Mine Y (2019). The impact of oolong and black tea polyphenols on human health. Food Bioscience 29: 55-61. doi: 10.1016/j.fbio.2019.03.009
  • Zubaidah E, Dewantari FJ, Novitasaria FR, Srianta I, Blanc PJ (2018). Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the kombucha consortium. Biocatalysis and Agricultural Biotechnology 13: 198-203. doi: 10.1016/j.bcab.2017.12.012
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Analysis of genetic variation in an important pest, Tuta absoluta, and its microbiota with a new bacterial endosymbiont

Ertan Mahir KORKMAZ, Fariba MEHRKHOU, Nurper GÜZ, Naciye Sena ÇAĞATAY

Gene expression profiles of Hsp family members in different poplar taxa under cadmium stress

Esra Nurten YER ÇELİK, Mehmet Cengiz BALOĞLU, Sezgin AYAN

Potential effects of storage period, warehouse locations, and methyl jasmonate in long-term stored garlic bulbs

Selen AKAN, Nurdan TUNA GÜNEŞ

Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts

Azime OZKAN KARABACAK, Canan Ece TAMER, Lütfiye YILMAZ ERSAN, Ömer Utku ÇOPUR, Tülay ÖZCAN, Senem SUNA, Sehime Gulsun TEMEL, Berra TÜRKOL KAYA

Esra Nurten Yer CELİK, Mehmet Cengiz BALOGLU, Sezgin AYAN

Fariba MEHRKHOU, Nurper GUZ, Ertan Mahir KORKMAZ, Naciye Sena CAGATAY

The potential of Gokturk 2 satellite images for mapping burnt forest areas

Dilek KÜÇÜK MATCI, Uğur AVDAN, Murat KURUCA

Fine root biomass and production regarding root diameter in Pinus densiflora and Quercus serrata forests: Soil depth effects and the relationship with net primary production

Hanna CHANG, Jiae AN, Seung Hyun HAN, Yowhan SON, Seongjun KİM, Hyun-jun KİM

Canan Ece TAMER, Sehime Gulsun TEMEL, Senem SUNA, Azime Ozkan KARABACAK, Tulay OZCAN, Lutfiye Yilmaz ERSAN, Berra Turkol KAYA, Omer Utku COPUR

Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions

Musa SEYMEN