Gene expression profiles of Hsp family members in different poplar taxa under cadmium stress

Heat shock proteins (Hsps), also known as stress proteins, are expressed by living organisms. Hsp genes play key roles in the regulation of change in response to various abiotic stresses (e.g., salinity, drought, heavy metal, and extreme temperatures). In our previous studies, all Hsp family gene members were determined and named using bioinformatics approaches. We also examined their expression profiles under different stress conditions. In this study, the aim was to indicate the expression pattern of Hsp family genes under cadmium (Cd) stress in different poplar taxa which are resistant to various stresses. Firstly, transcriptome data including RNA-seq and microarray were evaluated to select Hsp gene members that were suitable targets for the cadmium stress response. Then, the expression analysis of selected genes was studied with qRT-PCR (real-time quantitative reverse transcription PCR) in different poplar taxa. Under cadmium stress conditions, the expression profiles of genes including PtsHsp-44, PtsHsp-54, PtHsp40-117, PtHsp60-06, PtHsp60-12, PtHsp70-21, PtHsp70-28, PtHsp90-02, PtHsp90-10, PtHsp90-12, PtHsp100-22, and PtHsp100-71 were observed. In the future, N.03.368A and I-214 taxa may be used for plantation in Cd-contaminated areas and studied under subsequent long-term observation. This study yielded preliminary information about Cd-stress-related molecular mechanisms that will be utilized for future projects. In addition, the genes responsive against Cd stress can be used for gene cloning and functional analyses, which could open new perspectives for improving Cd-tolerant plants or trees.

___

  • Altunoglu YC, 2017, PHYSIOL MOL BIOL PLA, V23, P5, DOI 10.1007/s12298-016-0405-8
  • Altunoglu YC, 2016, PLANT GROWTH REGUL, V80, P225, DOI 10.1007/s10725-016-0160-4
  • Ariani A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117571
  • Ashraf M, 2007, ENVIRON EXP BOT, V59, P206, DOI 10.1016/j.envexpbot.2005.12.006
  • Baloglu MC, 2015, BIOTECHNOL BIOTEC EQ, V29, P1024, DOI 10.1080/13102818.2015.1079144
  • Baloglu Mehmet Cengiz, 2014, Plant Omics, V7, P260
  • Baloglu MC, 2014, GENE, V550, P117, DOI 10.1016/j.gene.2014.08.025
  • Baloglu MC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096014
  • Baloglu MC, 2014, BIOCHEM GENET, V52, P90, DOI 10.1007/s10528-013-9630-9
  • Benavides María P., 2005, Braz. J. Plant Physiol., V17, P21, DOI 10.1590/S1677-04202005000100003
  • Chinnusamy V, 2004, J EXP BOT, V55, P225, DOI 10.1093/jxb/erh005
  • Chun Y, 2020, RICE, V13, DOI 10.1186/s12284-020-0368-9
  • Demirevska K, 2008, PLANT GROWTH REGUL, V56, P97, DOI 10.1007/s10725-008-9288-1
  • Di Baccio D, 2014, J PLANT PHYSIOL, V171, P1693, DOI 10.1016/j.jplph.2014.08.007
  • Emamverdian Abolghassem, 2015, ScientificWorldJournal, V2015, P756120, DOI 10.1155/2015/756120
  • Ghatak A, 2016, J PROTEOMICS, V143, P122, DOI 10.1016/j.jprot.2016.02.032
  • Gupta SC, 2010, LIFE SCI, V86, P377, DOI 10.1016/j.lfs.2009.12.015
  • Hall JL, 2002, J EXP BOT, V53, P1, DOI 10.1093/jexbot/53.366.1
  • Hasegawa Y, 2006, PLANT METHODS, V2, DOI 10.1186/1746-4811-2-5
  • He JL, 2013, PLANT PHYSIOL, V162, P424, DOI 10.1104/pp.113.215681
  • HENDRICK JP, 1993, ANNU REV BIOCHEM, V62, P349, DOI 10.1146/annurev.bi.62.070193.002025
  • Jeong HJ, 2015, J INTEGR PLANT BIOL, V57, P913, DOI 10.1111/jipb.12362
  • Kim E, 2012, G3-GENES GENOM GENET, V2, P913, DOI 10.1534/g3.112.003368
  • Kosova K, 2011, J PROTEOMICS, V74, P1301, DOI 10.1016/j.jprot.2011.02.006
  • Kramer U, 2010, ANNU REV PLANT BIOL, V61, P517, DOI 10.1146/annurev-arplant-042809-112156
  • Landi S, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01214
  • Lim CJ, 2006, J PLANT RES, V119, P373, DOI 10.1007/s10265-006-0285-z
  • Liu JP, 1998, SCIENCE, V280, P1943, DOI 10.1126/science.280.5371.1943
  • Liu ZS, 2015, BMC PLANT BIOL, V15, DOI 10.1186/s12870-015-0511-8
  • Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  • Marmiroli M, 2013, CHEMOSPHERE, V93, P1333, DOI 10.1016/j.chemosphere.2013.07.065
  • Najafi M, 2013, THESIS .
  • RITOSSA F, 1962, EXPERIENTIA, V18, P571, DOI 10.1007/BF02172188
  • Rua Q, 2012, IDENTIFICATION REGUL .
  • Sanita di Toppi L, 1999, ENVIRON EXP BOT, V41, P105, DOI 10.1016/S0098-8472(98)00058-6
  • SCHLESINGER MJ, 1990, J BIOL CHEM, V265, P12111
  • Schoffl F, 1998, PLANT PHYSIOL, V117, P1135, DOI 10.1104/pp.117.4.1135
  • Taji T, 2004, PLANT PHYSIOL, V135, P1697, DOI 10.1104/pp.104.039909
  • Tang S, 2015, PLANT MOL BIOL REP, V33, P424, DOI 10.1007/s11105-014-0759-4
  • Taylor G, 2002, ANN BOT-LONDON, V90, P681, DOI 10.1093/aob/mcf255
  • Trent JD, 1996, FEMS MICROBIOL REV, V18, P249
  • Tuskan GA, 2006, SCIENCE, V313, P1596, DOI 10.1126/science.1128691
  • Wang WX, 2004, TRENDS PLANT SCI, V9, P244, DOI 10.1016/j.tplants.2004.03.006
  • Wang YF, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-344
  • Yang ZT, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004243
  • Yer EN, 2018, GENE, V678, P324, DOI 10.1016/j.gene.2018.08.049
  • Yer EN, 2016, PLANT MOL BIOL REP, V34, P483, DOI 10.1007/s11105-015-0933-3
  • Zafar Syed Adeel, 2016, Plant Omics, V9, P136, DOI 10.21475/poj.160902.p7644x
  • Zhang H, 2016, BIOTECHNOL BIOTEC EQ, V30, P669, DOI 10.1080/13102818.2016.1184588
  • Zhang N, 2016, BIORXIV, DOI [10.1101/044446, DOI 10.1101/044446]