The potential of Gokturk 2 satellite images for mapping burnt forest areas

The potential of Gokturk 2 satellite images for mapping burnt forest areas

Using remotely sensed data to identify burnt forest areas produces fast, economical, and highly accurate results. Accordingly, in this study we investigate the capabilities of Göktürk-2, Turkey’s national satellite, for mapping burnt forest areas. We compare our results with those obtained from Landsat-8 and Worldview-2 satellite images, which are frequently used for mapping burnt areas. The capabilities of the satellites are compared, in terms of detecting burnt forest areas, using support vector machine (SVM) and rotation forest (RF) classification, which are advanced methods. According to the results of the accuracy analysis, SVM classification gives similar kappa statistics and overall accuracy for Göktürk-2 and Landsat-8 images, while the performance of Worldview-2 shows greater general accuracy. Although there is no significant difference between the two classification methods forLandsat-8 images, SVM gives better results than RF for both Göktürk-2 and Worldview-2. The results of our study show that Göktürk-2 images are an effective source for mapping burnt forest areas.

___

  • Akar Ö, Görmüş ET (2019). Göktürk-2 ve Hyperion EO-1 uydu görüntülerinden rastgele orman sınıflandırıcısı ve destek vektör makineleri ile arazi kullanım haritalarının üretilmesi. Geomatik 4 (1): 68-81 (in Turkish). doi: 10.29128/ geomatik.476668
  • Anthony G, Greg H, Tshilidzi M (2007). Classification of images using support vector machines. arXiv preprint. arXiv: 07093967. Aronoff S (1982). Classification accuracy: a user approach. Photogrammetric Engineering and Remote Sensing 48:1299- 1307.
  • Ashburn P (1979). The vegetative index number and crop identification. Johnson Space Center Proceedings of Technical Sessions, Vol. 1. Houston, TX, USA: NASA Johnson Space Center.
  • Atak VO, Erdoğan M, Yılmaz A (2015). Göktürk-2 uydu görüntü testleri. Harita Dergisi 81: 18-33 (in Turkish)
  • Barbosa PM, Stroppiana D, Grégoire J-M, Pereira JMC (1999b). An assessment of vegetation fire in Africa (1981–1991): burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles 13: 933-950.
  • Bayburt S (2009). Uydu görüntülerinin piksel ve nesne tabanlı sınıflandırma sonuçlarının karşılaştırılması (Doğu Trakya Bölgesi örneği). MSc, İstanbul Technical University, İstanbul, Turkey.
  • Bazi Y, Melgani F (2006). Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote 44: 3374-3385.
  • Blackburn GA (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing 19: 657-675.
  • Bruzzone L, Chi M, Marconcini M (2006). A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote 44:3363-3373.
  • Çölkesen İ, Yomralıoğlu T, Kavzoğlu T (2015).Obje tabanlı sınıflandırmada bölgeleme esasına dayalı ölçek parametresi tespiti: WorldView-2 uydu görüntüsü örneği. Harita Dergisi 154: 9-18 (in Turkish).
  • Cortes C, Vapnik V (1995). Support-vector networks. Machine Learning 20: 273-297.
  • Epting J, Verbyla D, Sorbel B (2005). Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment 96: 328-339.
  • Fitriana HL, Prasasti I, Khomarudin MR (2018). Mapping burned areas from landsat-8 imageries on mountainous region using reflectance changes. MATEC Web of Conferences 229. doi: 10.1051/matecconf/201822904012
  • Fitzpatrick-Lins K (1981). Comparison of sampling procedures and data analysis for a land-use and land-cover map. Photogrammetric Engineering and Remote Sensing 47: 343- 351.
  • Foody GM, Mathur A (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote 42: 1335-1343.
  • Foody GM, Mathur A, Sanchez-Hernandez C, Boyd DS (2006). Training set size requirements for the classification of a specific class. Remote Sensing of Environment 104: 1-14.
  • Gangkofner UG, Pradhan PS, Holcomb DW (2007). Optimizing the high-pass filter addition technique for image fusion. Photogrammetric Engineering & Remote Sensing 73: 1107- 1118.
  • Ghosh A, Joshi PK (2014). A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation 26: 298-311.
  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002). Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment 80: 76-87.
  • Gunn SR (1998). Support vector machines for classification and regression. ISIS technical report 14: 5-16.
  • Gürcan İ, Teke M, Leloğlu UM (2016). Land use/land cover classification for Göktürk-2 satellite. In: 24th Signal Processing and Communication Application Conference (SIU); Zonguldak, Turkey. pp. 2097-2100.
  • Han S, Qubo C, Meng H (2012). Parameter selection in SVM with RBF kernel function. In: World Automation Congress 2012; Puerto Vallarta, Mexico. pp. 1-4.
  • Hsu C-W, Chang C-C, Lin C-J (2003). A practical guide to support vector classification. Taipei City, Taiwan: National Taiwan University.
  • Huang C, Davis L, Townshend J (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23: 725-749.
  • Huete AR (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25: 295-309.
  • Jiménez-Muñoz J, Sobrino J, Plaza A, Guanter L, Moreno J et al. (2009). Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: case study of PROBA/CHRIS data over an agricultural area. Sensors 9: 768-793.
  • Joachims T (1998). Text categorization with support vector machines: Learning with many relevant features. In: European conference on machine learning. Springer, pp 137-142.
  • Kavzoğlu T, Çölkesen İ (2010). Destek vector makineleri ile uydu görüntülerinin sınıflandırılmasında kernel fonksiyonlarının etkilerinin incelenmesi. Harita Dergisi 144: 73-82 (in Turkish).
  • Kramer HJ (2002). Observation of the Earth and its Environment: Survey of Missions and Sensors. Berlin, Germany: Springer Science & Business Media.
  • Ling F, Du Y, Zhang Y, Li X, Xiao F (2015). Burned-area mapping at the subpixel scale with MODIS images. IEEE Geoscience and Remote Sensing Letters 12: 1963-1967.
  • Liu K-H, Huang D-S (2008). Cancer classification using rotation forest. Computers in Biology and Medicine 38: 601-610.
  • Loboda T, O’neal K, Csiszar I (2007). Regionally adaptable dNBRbased algorithm for burned area mapping from MODIS data. Remote Sensing of Environment 109: 429-442.
  • Long T, Zhang Z, He G, Jiao W, Tang C et al. (2019). 30 m resolution global annual burned area mapping based on landsat images and Google Earth Engine. Remote Sensing 11:489.
  • Lucas I, Janssen F, van der Wel F (1994). Accuracy assessment of satellite derived land-cover data: a review. Photogrammetric Engineering and Remote Sensing 60: 426-479.
  • Malinverni ES, Tassetti AN, Mancini A, Zingaretti P, Frontoni E et al. (2011). Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery. International Journal of Geographical Information Science 25: 1025-1043.
  • Melgani F, Bruzzone L (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote 42: 1778-1790.
  • Meng R, Wu J, Schwager KL, Zhao F, Dennison PE (2017). Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sensing of Environment 191: 95-109.
  • Miller JD, Yool SR (2002). Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote sensing of Environment 82: 481-96.
  • Mountrakis G, Im J, Ogole C (2011). Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing 66: 247-259.
  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115: 1145-1161.
  • Pinty B, Verstraete M (1992). GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101: 15-20.
  • Qian Y, Zhou W, Yan J, Li W, Han L (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing 7: 153-168.
  • Quintano, C, Fernández-Manso A,Fernández-Manso O (2018). Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. International Journal of Applied Earth Observation and Geoinformation 64: 221-25.
  • Rodriguez JJ, Kuncheva LI, Alonso CJ (2006). Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28: 1619-1630.
  • Roy DP, Boschetti L, Trigg SN (2006). Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters 3: 112-116.
  • Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E (2016). Active fire detection using Landsat-8/OLI data. Remote sensing of Environment 185: 210-20.
  • Snedecor GW, Cochran WG (1967). Statistical Methods. Ames, IA, USA: Iowa State University Press.
  • Sunar F (2018). Digital Görüntü İşleme. Eskişehir, Turkey: Anadolu Üniversitesi Yayınları (in Turkish).
  • Teke M (2016). Satellite image processing workflow for RASAT and Göktürk-2. Journal of Aeronautics and Space Technologies 9: 1-13.
  • Tucker CJ (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment 8: 127-150.
  • Van Niel TG, , McVicar TR, Datt B (2005). On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment 98: 468-80.
  • Vapnik, Vladimir N(1995). The Nature of Statistical Learning Theory. New York, NY, USA: Springer. doi: 10.1007/978-1-4757-2440-0
  • Vhengani L, Frost P, Lai C, Booi N, Van den Dool R et al. (2015). Multitemporal burnt area mapping using Landsat 8: Merging multiple burnt area indices to highlight burnt areas. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Milan, Italy. pp. 4153-4156.
  • Waske B, Benediktsson JA (2007). Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote 45: 3858-3866.
  • Wu Z, Middleton B, Hetzler R, Vogel J, Dye D (2015). Vegetation burn severity mapping using Landsat-8 and WorldView-2. Photogrammetric Engineering & Remote Sensing 81: 143-154.
  • Xia J, Chanussot J, Du P, He X (2014). Spectral–spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields. IEEE Transactions on Geoscience and Remote 53: 2532-2546.
  • Yan G, Mas JF, Maathuis B, Xiangmin Z, Van Dijk P (2006). Comparison of pixel‐based and object‐oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing 27: 4039-4055.
  • Zhang Y, Mishra RK (2012). A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion. In: IEEE International Geoscience and Remote Sensing Symposium; Munich, Germany. pp. 182-185.
  • Zheng Z, Li J, Ren J (2007). Discussion for technology ff HPF resolution merge using in Dali’s remote sensing image. Yunnan Geographic Environment Research 20.