Efficient protoplast isolation from ovule-derived embryogenic callus in Citrus volkameriana

The present study reports on the isolation of viable protoplast from ovule-derived embryogenic calli of Volkameriana (Citrus volkameriana L.), which is a rootstock in high demand for lemon production.Ovules of C. volkameriana isolated at 3 different immature fruit stages, comprising4, 8, and 12 weeks after anthesis (WAA), were cultured on5 different media in order to produce embryogenic callus lines as a source material for protoplast isolation. EME medium (MT basal medium + 0.5 gL(-1) malt extract), with the addition of phytohormones [kinetin (KIN), 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP)] at different concentrations, were tested for callogenesis. According to 2-way ANOVA, significant effects were determined as a result of the immature fruit stage and type of culture media (P

___

  • Abbate L, 2019, EUR J PLANT PATHOL, V153, P837, DOI 10.1007/s10658-018-1599-0
  • Al-Taha H. A., 2012, Acta Agriculturae Slovenica, V99, P185
  • Cai XD, 2010, ACTA PHYSIOL PLANT, V32, P215, DOI 10.1007/s11738-009-0396-y
  • Cai XD, 2009, SCI HORTIC-AMSTERDAM, V122, P323, DOI 10.1016/j.scienta.2009.05.017
  • Carimi F, 1998, PLANT CELL TISS ORG, V54, P183, DOI 10.1023/A:1006113731428
  • Chamandoosti F, 2017, INT J ENV AGR RES, V3, P36
  • Chen YM, 2019, BOT STUD, V60, DOI 10.1186/s40529-019-0257-y
  • Chetto O, 2016, INT J INNOVATION APP, V17, P236
  • Chumakov MI, 2012, APPL BIOCHEM MICRO+, V48, P657, DOI 10.1134/S0003683812080017
  • Cimen B, 2016, ABIOTIC AND BIOTIC STRESS IN PLANTS - RECENT ADVANCES AND FUTURE PERSPECTIVES, P527, DOI 10.5772/62047
  • Da Gloria FJM, 2000, PESQUI AGROPECU BRAS, V35, P727, DOI 10.1590/S0100-204X2000000400008
  • Dambier D, 2011, PLANT CELL REP, V30, P883, DOI 10.1007/s00299-010-1000-z
  • Davey MR, 2005, BIOTECHNOL ADV, V23, P131, DOI 10.1016/j.biotechadv.2004.09.008
  • DENG XX, 1992, SCI HORTIC-AMSTERDAM, V49, P55, DOI 10.1016/0304-4238(92)90142-Y
  • Fowler J, 1998, PRACTICAL STAT FIELD, P272
  • GMITTER FG, 1986, PLANT CELL TISS ORG, V6, P139
  • Grosser J. W., 1990, Plant Breeding Reviews, V8, P339
  • Grosser JW, 1996, PLANT CELL REP, V15, P672, DOI 10.1007/BF00231922
  • GROSSER JW, 1988, PLANT CELL REP, V7, P5, DOI 10.1007/BF00272965
  • Grosser JW, 2000, IN VITRO CELL DEV-PL, V36, P434
  • GROSSER JW, 1994, HORTSCIENCE, V29, P812, DOI 10.21273/HORTSCI.29.7.812
  • Guo WW, 2013, SCI HORTIC-AMSTERDAM, V163, P20, DOI 10.1016/j.scienta.2013.07.018
  • Guo WW, 2001, EUPHYTICA, V118, P175, DOI 10.1023/A:1004147208099
  • Hasan M. N., 2019, American Journal of Plant Sciences, V10, P285, DOI 10.4236/ajps.2019.102022
  • Koc N. K., 1999, Turkish Journal of Agriculture & Forestry, V23, P157
  • Machado MP, 2015, ACTA HORTIC, V1065, P657
  • MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x
  • MURASHIGE T., 1969, Proceedings 1st int. Citrus Symp., Univ. California, Riverside 1968., V3, P1155
  • OHGAWARA T, 1985, THEOR APPL GENET, V71, P1, DOI 10.1007/BF00278245
  • Raikar SV, 2008, PLANT BIOTECHNOL REP, V2, P171, DOI 10.1007/s11816-008-0058-3
  • Ramdan R., 2014, Journal of Applied Biosciences, V73, P5959
  • Ricci Adriana Patrícia, 2002, Sci. agric. (Piracicaba, Braz.), V59, P41, DOI 10.1590/S0103-90162002000100005
  • Rizkalla A. A., 2007, J APPL SCI RES, V3, P1186
  • Roose M.L., 2014, CITRUS PRODUCTION MA, P95
  • Saunt J, 2000, CITRUS VARIETIES WOR .
  • Savita, 2011, Physiology and Molecular Biology of Plants, V17, P161, DOI 10.1007/s12298-011-0055-9
  • Schinor EH, 2011, REV BRAS FRUTIC, V33, P526, DOI 10.1590/S0100-29452011005000050
  • SINGH S, 1994, HORTSCIENCE, V29, P214, DOI 10.21273/HORTSCI.29.3.214
  • Sinha A, 2003, AUST J BOT, V51, P103, DOI 10.1071/BT01104
  • STARRANTINO A, 1980, HORTSCIENCE, V15, P296
  • Tavano ECR, 2009, BIOL PLANTARUM, V53, P395, DOI 10.1007/s10535-009-0075-2
  • Zhou QY, 2019, TURK J AGRIC FOR, V43, P275, DOI 10.3906/tar-1805-62