Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions

Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions

With an annual global production of approximately 25 million tons, the common bean (Phaseolus vulgaris L), a member of the genus Phaseolus, is one of the major protein sources used as food for humans. In this study, it was aimed to investigate the genome size of the common bean genetic resource collection (154 common bean accessions) in Turkey by flow cytometry (FCM) and determine whether geographical variables affected the genome size. In addition, the number and distribution of 5S and 45S ribosomal DNA loci were designated by performing a fluorescence in situ hybridization (FISH) analysis in some of the accessions. The FCM analyses revealed that the mean nuclear DNA content of the accessions varied from 1.28 pg2C-1 to 1.55 pg2G1 (mean 1.35 pg2C-1), and the differences between these accessions were statistically significant (P < 0.01). Intraspecific variation in the genome size was determined, and a positive correlation was found between the altitude and genome size. However, latitude and longitude did not have any statistically significant effect on the genome size. In the principal coordinate analysis, the accessions were divided into 3groups. Based on the results of the FISH analysis performed on 5 different accessions with varying genome sizes, using 5S and 45S rDNA genes as probes, the number of 5S rDNA loci was 4 in the common bean and stable among the common bean accessions, while the number of 45S rDNA loci was highly polymorphic, varying between 6 and 16. Consequently, it was determined in the present study that the genetic resource collection of common bean had a wide variation in terms of genome size and genome organization.

___

  • Akbudak MA, Şakiroğlu M, Tuna M (2018). Estimation of nuclear DNA content and determination of relationship between altitude and genome size of USDA Turkish oat (Avena spp.) Collection. Gesunde Pflanzen 70 (1): 171-178. doi: 10.1007/ s10343-018-0428-x
  • Almeida C, Pedrosa-Harand A (2011). Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Cytogenetic and Genome Research 132 (3): 212- 217. doi: 10.1159/000321677
  • Altrock S, Fonsêca A, Pedrosa-Harand A (2011). Chromosome identification in the Andean common bean accession G19833 (Phaseolus vulgaris L., Fabaceae). Genetics and Molecular Biology 34 (3): 459-463. doi: 10.1590/S1415-47572011005000029
  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E et al. (2010). Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theoretical and Applied Genetics 121: 829- 843. doi: 10.1007/s00122-010-1353-2
  • Arumuganathan K, Earle ED (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9 (3): 208-218. doi: 10.1007/BF02672069
  • Ayonoadu UWU (1974). Nuclear DNA variation in Phaseolus. Chromosoma 48 (1): 41-49.
  • Bareither N, Scheffel A, Metz J (2017). Distribution of polyploid plants in the common annual Brachypodium distachyon (s.l.) in Israel is not linearly correlated with aridity. Israel Journal of Plant Science 64 (1): 83-92 doi: 10.1080/07929978.2017.12
  • Beletti P, Marzachi C, Lanteri S (1997). Flow cytometric estimation of nuclear DNA content in different species of Phaseolus. DI.VA.P.R.A. - Plant Breeding and Seed Production. Torino, Italy: University of Turin.
  • Bennett MD, Leitch IJ (1995). Nuclear DNA amounts in angiosperm. Annals of Botany 76 (2): 113-176. doi: 10.1006/anbo.1995.1085
  • Bennett MD, Smith JB, Heslop-Harrison JS (1982). Nuclear DNA amounts in angiosperms. Proceedings of the Royal Society B Biological Sciences 216 (1203): 227-274. doi: 10.1098/ rspb.1982.0069
  • Bennetzen JL (2007). Patterns in grass genome evolution. Current Opinion in Plant Biology 10 (2): 176-181. doi: 10.1016/j. pbi.2007.01.010
  • Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN et al. (2018). Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics 1 (1): 1-19. doi: 10.1371/journal.pgen.1007162
  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M et al. (2013). Molecular analysis of the parallel domestication of the common bean (P.vulgaris) in Mesoamerica and the Andes. New Phytology 197(1): 300-313. doi: 10.1111/j.1469-8137.2012.04377.x
  • Blair M, Gonzales LF, Kimani PM, Butare L (2010). Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (P. vulgaris L.) from central Africa. Theoretical and Applied Genetics 121 (2): 237-248. doi: 10.1007/s00122- 010-1305-x
  • Blair MW, Soler A, Cortés AJ (2012). Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7: e49488. doi: 10.1371/journal.pone.0049488
  • Bonifácio EM, Fonsêca A, Almeida C, Dos Santos KG, PedrosaHarand A (2012). Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theoretical and Applied Genetics 124 (8): 1513- 1520. doi: 10.1007/s00122-012-1806-x
  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000). Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Annals of
  • Botany 86 (3): 565-573. doi: 10.1006/anbo.2000.1218 Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsoniz P,
  • Ceccarelli M et al. (1998). Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction Theoretical and Applied Genetics 96 (1): 559-567. doi: 10.1007/s001220050774
  • Castagnaro AP, Poggio L, Naranjo CA (1990). Nuclear DNA content variation in Phaseolus (Fabaceae). Darwiniana 30 (1- 4): 195-200.
  • Castro-Guerrero NA, Isidra-Arellano MC, Mendoza-Cozat DG, Valdés-López O (2016). Common bean: a legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Frontiers in Plant Science 7: 1-7. doi: 10.3389/fpls.2016.00600
  • Ceccarelli S, Minelli F, Maggini F, Cionini PG (1995). The genetical society of great Britain genome size variation in Vicia faba. Heredity 74 (1): 180-187.
  • Chacón MI, Pickersgill SB, Debouck DG (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics 110 (3): 432-444. doi: 10.1007/s00122-004-1842-2
  • Chia JM, Song C, Bradbury PJ, Costich D, De Leon N et al. (2012). Maize hapmap2 identifies extant variation from a genome in flux. Nature Genetics 44 (1): 803-838. doi: 10.1038/ng.2313
  • Chung MC, Lee YI, Cheng YY, Chou YJ, Lu CF (2008). Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theoretical and Applied Genetics 116 (6): 745- 753. doi: 10.1007/s00122-007-0705-z
  • Cortés A, Chavarro CM, Madriñán S, This D, Blair MW (2012). Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgarisL.). BMC Genetics 13 (1): 58. doi: 10.1186/1471-2156-13-58
  • Creber HMC, Davies MS, Francis D, Walker HD (1994).Variation in DNA C value in natural populations of Dactylis glomerata L. New Phytologist 128 (1): 555-561. doi: 10.1111/j.1469- 8137.1994.tb03001.x
  • De Moraes AP, Dos Santos SWF, Guerra M (2007). Karyotype diversity and the origin of grapefruit. Chromosome Research 15 (1): 115-121. doi: 10.1007/s10577-006-1101-2
  • Delgado-Salinas A, Bibler A, Lavin M (2006). Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Systematic Botany 31 (4): 779-791. doi: 10.1600/036364406779695960
  • Dolezel J, Bartos J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95 (1): 99-110. doi: 10.1093/aob/mci005
  • Feuillet C, Keller B (2002). Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Annals of Botany 89 (1): 3-10. doi: 10.1093/ aob/mcf008
  • Fonsêca A, Ferreira J, Dos Santos TRB, Mosiolek M, Bellucci E et al. (2010). Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Research 18 (4): 487-502. doi: 10.1007/ s10577-010-9129-8
  • Fukui K, Ohmido N, Khush GS (1994). Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theoretical and Applied Genetics 87 (8): 893- 899. doi: 10.1007/BF00225782
  • Galeano CH, Fernandez AC, Gomez M, Blair MW (2009). Single strand conformation polymorphism based SNP and indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10: 629. doi: 10.1186/1471-2164-10-629
  • Gepts P (1998). Origin and evolution of common bean: past events and recent trends. Hort Science 33 (7): 1124-1130. doi: 10.21273/HORTSCI.33.7.1124
  • Gerlach WL, Dyer TA (1980). Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Research 8 (21): 4851-4865. doi: 10.1093/ nar/8.21.4851
  • Gioia T, Logozzo G, Attene G, Bellucci E, Benedettelli S et al. (2013). Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) Germplasm. PLoS ONE 8: e75974. doi: 10.1371/journal.pone.0075974
  • Gregory TR (2005). The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals of Botany 95 (1): 133-146. doi:10.1093/aob/mci009
  • Greilhuber J (2005). Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95 (1): 91-98. doi: 10.1093/aob/mci004
  • Guo F, Wu J, Chen L, Zhou J, Yin Y (2018). Genome size variation is correlated with altitude within Chinese species of Allium L. Pakistan Journal of Botany 50 (4): 1517-1520.
  • Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V et al. (2009). Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: a revised view of species differentiation. Chromosome Research 17 (3): 291-304. doi: 10.1007/s10577-009-9033-2
  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001). Ribosomal DNA is an effective marker of Brassica chromosomes. Theoretical and Applied Genetics 103 (4): 486- 490. doi: 10.1007/s0012201006
  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S et al. (2006). Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Annals of Botany 97 (2): 205-216. doi: 10.1093/aob/mcj031
  • Hayasaki M, Morikawa T, Leggett JM (2001). Intraspecific variation of 18S–5.8S–26S rDNA sites revealed by FISH and RFLP in wild oat, Avena agadiriana. Genes & Genetic Systems 76 (1): 9-14. doi: 10.1266/ggs.76.9
  • Hoffmann MH, Schmuths H, Koch C, Meister A, Fritsch RM (2010). Comparative analysis of growth, genome size, chromosome numbers and phylogeny of Arabidopsis thaliana and three Cooccurring species of the Brassicaceae from Uzbekistan. Journal of Botany 2010 (1): 1-8. doi: 10.1155/2010/504613
  • İnceer H, Aksu Kalmuk N, Čížková J, Doležel J (2018). Genome size in some taxa of Crepis L. (Asteraceae) from Turkey. Caryologia 71 (3): 217-223. doi: 10.1080/00087114.2018.1460057
  • Iwata A, Tek AL, Richard MM, Abernathy B, Fonseca A et al. (2013). Identification and characterization of functional centromeres of the common bean. Plant Journal 76 (1): 47-60. doi: 10.1111/ tpj.12269
  • Iwata-Otsubo A, Radke B, Findley S, Abernathy B, Vallejos CE et al. (2016). Fluorescence in situ hybridization (FISH)-based karyotyping reveals rapid evolution of centromeric and subtelomeric repeats in common bean (Phaseolus vulgaris) and relatives. Genes Genomes Genetics 6 (4): 1013-1022. doi: 10.1534/g3.115.024984
  • Jakob SS, Meister A, Blattner FR (2004). The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molecular Biology and Evolution 21 (5): 860-869. doi: 10.1093/molbev/ msh092
  • Jenkins G, Hasterok R (2007). BAC landing on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols 2: 88-98. doi: 10.1038/nprot.2006.490
  • Kami J, Becerra Velasquez V, Debouck DG, Gepts P (1995). Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proceeding of the National Academy of Sciences of the USA 92 (4): 1101-1104. doi: 10.1073/pnas.92.4.1101
  • Knight CA, Molinari NA, Petrov DA (2005). The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany 95 (1): 177-190. doi: 10.1093/aob/mci011
  • Kwak M, Gepts P (2009). Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theoretical and Applied Genetics 118 (5): 979- 992. doi: 10.1007/s00122- 008-0955-4
  • Lioi L, Piergiovanni AR, Pignone D, Puglisi S, Santantonio M et al. (2005). Genetic diversity of some surviving on-farm Italian common bean (Phaseolus vulgaris L.) landraces. Plant Breed 124: 576-581. doi: 10.1111/j.1439-0523.2005.01153.x
  • Lobaton JD, Miller T, Gil J, Ariza D, De la Hoz JF et al. (2018). Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11 (2): 1-21. doi: 10.3835/ plantgenome2017.08.0068
  • López-Alvarez D, Manzaneda AJ, Rey PJ, Giraldo P, Benavente E et al. (2015). Environmental niche variation and evolutionary diversifi cation of the Brachypodium distachyon grass complex species in their native circum-Mediterranean range 1. American Journal of Botany 102 (7): 1073-1088. doi: 10.3732/ajb.1500128
  • Lysaak MA, Rostkovaa A, Dixon JM, Rossi G, Dolezel J (2000). Limited genome size variation in Sesleria albicans. Annals of Botany 86 (1): 399-403. doi: 10.1006/anbo.2000.1200
  • Maluszynska J (2002). In situ hybridization in plants—methods and applications. In: Jain SM, Brar DS, Ahloowalia BS (editors). Molecular Techniques in Crop Improvement. Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Mamidi S, Rossi M, Moghaddam SM, Annam D, Lee R et al. (2013). Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110 (3): 267- 276. doi: 10.1038/hdy.2012.82
  • Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E et al. (2012). Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193 (3): 797-805. doi: 10.1111/j.1469-8137.2011.03988.x
  • Marcon AB, Barros IC, Guerra M (2005). Variation in chromosome numbers, CMA bands and 45S rDNA sites in species of Selaginella (Pteridophyta). Annals of Botany 95 (2): 271-276. doi: 10.1093/ aob/mci022
  • Mekki L, Badr A, Fekry M (2007). Cytogenetic studies on nine genotypes of Phaseolus vulgaris L. cultivated in Egypt in relation to zinc efficiency. Pakistan Journal of Biological Sciences 10 (23): 4230-4235. doi: 10.3923/pjbs.2007.4230.4235
  • Melo NF, Guerra M (2003).Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany 92: 309-316. doi: 10.1093/aob/mcg138
  • Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999). Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42 (6): 1224-1233. doi: 10.1139/g99-070
  • Nadeem MA, Habyarimana E, Çiftçi V, Nawaz MA, Karaköy T et al. (2018). Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseqgenerated silicoDArT marker information. PLoS ONE 13 (10): e0205363. doi: 10.1371/journal.pone.0205363
  • Nagl W, Treviranus A (1995). A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Botanica Acta 108 (5): 403-406. doi: 10.1111/j.1438-8677.1995.tb00513.x
  • Nanni L, Bitocchi E, Bellucci E, Rossi M, Rau D et al. (2011). Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 123 (8): 1341- 1357. doi: 10.1007/s00122-011-1671-z
  • Nemli S, Aşçıoğul TK, Ateş D, Eşiyok D, Tanyolaç MB (2017). Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkey. Turkish Journal of Agriculture and Forestry 41 (5): 389-404. doi: 10.3906/tar1707-89
  • Ohri D (1998). Genome size variation and plant systematics. Annals of Botany 82 (1): 75-83. doi: 10.1006/anbo.1998.0765
  • Özkan H, Tuna M, Kilian B, Mori N, Ohta S (2010). Genome size variation in diploid and tetraploid wild wheats. Annals of Botany Plants 2010: plq015. doi: 10.1093/aobpla/plq015
  • Palomina G, Sauso SM (2000).Variation of nuclear DNA content in the siflorus species of Lonchocarpus (Leguminosae). Annals of Botany 85 (1): 69-76. doi: 10.1006/anbo.1999.0998
  • Papa R, Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theoretical and Applied Genetics 106 (2): 239- 250. doi: 10.1007/s00122-002-1085-z
  • Pecinka A, Suchankova P, Lysak MA, Travnicek B, Dolezel J (2006). Nuclear DNA content variation among Central European Koeleria taxa. Annals of Botany 98 (1): 117-122. doi: 10.1093/aob/mcl077
  • Pedrosa-Harand A, Souza de Almeida CC, Mosiolek M, Blair MW, Schweizer D et al. (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theoretical and Applied Genetic 112 (5): 924-933. doi: 10.1007/s00122-005-0196-8
  • Pedrosa-Harand A, Kami J, Gepts P (2009). Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Research 17 (3): 405- 417. doi: 10.1007/s10577-009-9031-4
  • Raskina O, Belyayev A, Nevo E (2004). Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Research 12 (2): 153-161. doi: 10.1023/B: CHRO.0000013168.61359.43
  • Rayburn A, Auger JA (1990). Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theoretical and Applied Genetics 79 (4): 470-474. doi: 10.1007/BF00226155
  • Rayburn AL, James Price A, Smith JD, Gold JR (1985). C-band heterochromatin and DNA content in Zea mays. American Journal of Botany 71 (10): 1610-1617. doi: 10.1002/j.1537- 2197.1985.tb08425.x
  • Rees H, Walters MR (1965). Nuclear DNA and the evolution of wheat. Heredity 20 (1): 73-82. doi:10.1038/hdy.1965.9
  • Robledo G, Seijo G (2009). Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theoretical and Applied Genetic 121 (6): 1033-1046. doi: 10.1007/s00122-010-1369-7
  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D et al. (2009). Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evolutionry Appliecations 2 (4): 504-522. doi: 10.1111/j.1752-4571.2009.00082.x
  • Santalla M, Rodiño A, De Ron A M (2002). Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theoretical and Applied Genetics 104 (1): 934-994. doi: 10.1007/s00122-001-0844-6
  • Savaş Tuna G, Başer I, Tuna M (2019). Genome size variation among natural populations of Brachypodium distachyon and B. hybridum collected from different regions of Turkey. Turkish Journal of Botany 43 (2): 196-207. doi: 10.3906/bot-1807-96
  • Savaş Tuna G, Duyu G, Uzun K, Yücel G, Tuna M (2017). Determination of nuclear DNA content and ploidy of Hypericum perforatum L. accessions collected from Western Turkey. Journal of Agricultural Sciences 23 (4): 395-403. doi: 10.15832/ankutbd.385863
  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB et al. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics 46 (7): 707- 713. doi: 10.1038/ng.3008
  • Sharma S, Raina SN (2005). Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenetic and Genome Research 109 (1-3): 15-26. doi: 10.1159/000082377
  • Sheng J, Hu X, Zeng X, Li Y, Zhou F et al. (2016). Nuclear DNA content in Miscanthus sp. and the geographical variation pattern in Miscanthus lutarioriparius. Scientific Reports 6 (4): 1-8. doi: 10.1038/srep34342
  • Sims LE, Price HJ (1985). Nuclear DNA content variation in Helianthus (Asteraceae). American Journal of Botany 72 (8): 1213-1219. doi: 10.1002/j.1537-2197.1985.tb08374.x
  • Smarda P, Bures P (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany 98 (1): 665-678. doi: 10.1093/aob/ mcl150
  • Snowdon R, Friedt W, Kohler A, Kohler W (2000). Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.). Annals of Botany 86 (1): 201-204. doi: 10.1006/anbo.2000.1156
  • Souza G, Costa L, Guignard MS, Van-Lume B, Pellicer J et al. (2019). Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics 38 (7): 13-23. doi: 10.1016/j.ppees.2019.03.002
  • Unfried I, Gruendler P (1990). Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Research 18 (13): 4011. doi: 10.1093/nar/18.13.4011
  • Vlasova A, Capella-Gutierrez S, Rendon-Anaya M, HernandezOñate M, Minoche AE et al. (2016). Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology 17 (32): 1-18. doi: 10.1186/s13059-016-0883-6
  • Walker DJ, Monino I, Correal E (2006).Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environmental and Experimental Botany 55: 258-265. doi: 10.1016/j.envexpbot.2004.11.005
  • Wang B, Mao J-F, Zhao W, Wang X-R (2013). Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis. PLoS ONE 8 (6): e67345. doi: 10.1371/ journal.pone.0067345