Elevated in-soil CO2 affects physiology and growth of Pinus densiflora and Quercus variabilis seedlings under an artificial CO2 release experiment

It is important to understand how woody species are affected by elevated in-soil CO2 for carbon capture and storage (CCS). A study was conducted to analyze the effects of artificially released in-soil CO2 on the physiology and growth of 4-year-old Pinus densiflora and 3-year-old Quercus variabilis seedlings. Approximately 7.9 kg CO2 plot(-1)d(-1) was released at a depth of 0.5 m over the period from 20 June to 20 July 2017. For both species, chlorophyll fluorescence and content, photosynthetic rate, and leaf size significantly decreased after the CO2 release. However, stomatal behavior varied between these species under the elevated in-soil CO2 conditions. Elevated in-soil CO2 inhibited plant physiological functions by limiting available in-soil O-2. The leaf size of treatment plots showed significantly lower values of 0.60 +/- 0.05 cm(2) for P. densiflora and 12.05 +/- 1.47 cm(2) for Q. variabilis compared to those of control plots of 0.90 +/- 0.09 cm(2) for P. densiflora and 21.84 +/- 3.62 cm(2) for Q. variabilis, whereas the number of leaves increased from 2697 +/- 153 leaves to 3121 +/- 255 leaves for P. densiflora and from 95 +/- 4 leaves to 288 +/- 52 leaves for Q. variabilis. It was found that the decrease in leaf size resulted in a second flush, which increased the total leaf area per seedling. The biomass of P densiflora significantly decreased in the treatment plots (P

___

  • Attia Z, 2015, J EXP BOT, V66, P4373, DOI 10.1093/jxb/erv195
  • AUSTIN MP, 1985, J ECOL, V73, P667, DOI 10.2307/2260503
  • Bachu S, 2000, ENERG CONVERS MANAGE, V41, P953, DOI 10.1016/S0196-8904(99)00149-1
  • BARNES JD, 1992, ENVIRON EXP BOT, V32, P85, DOI 10.1016/0098-8472(92)90034-Y
  • Bellante GJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108299
  • Benson S.M., 2005, P 7 INT C GREENH GAS, V7, P1259
  • BORCHERT R, 1975, PHYSIOL PLANTARUM, V35, P152, DOI 10.1111/j.1399-3054.1975.tb03885.x
  • Brooks TJ, 2000, PHOTOSYNTH RES, V66, P97, DOI 10.1023/A:1010634521467
  • Buckley TN, 2005, NEW PHYTOL, V168, P275, DOI 10.1111/j.1469-8137.2005.01543.x
  • Casper BB, 2001, FUNCT ECOL, V15, P740, DOI 10.1046/j.0269-8463.2001.00583.x
  • Chapman SP, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00474
  • Comstock JP, 2002, J EXP BOT, V53, P195, DOI 10.1093/jexbot/53.367.195
  • Daie J., 1985, HORTIC REV, V7, P69, DOI DOI 10.1002/9781118060735.CH2
  • DALE JE, 1992, BIOSCIENCE, V42, P423, DOI 10.2307/1311861
  • Davies SJ, 1998, ECOLOGY, V79, P2292, DOI 10.1890/0012-9658(1998)079[2292:PONPMS]2.0.CO;2
  • DOSTAL R., 1927, BER DEUTSCH BOT GES, V45, P436
  • Ewert F, 2004, ANN BOT-LONDON, V93, P619, DOI 10.1093/aob/mch101
  • Farrar JF, 1996, PHOTOASSIMILATE DIST, P389
  • Feitz A, 2014, ENRGY PROCED, V63, P3891, DOI 10.1016/j.egypro.2014.11.419
  • Hansen J, 2004, SCI AM, V290, P68, DOI 10.1038/scientificamerican0304-68
  • He W, 2016, INT J GREENH GAS CON, V53, P117, DOI 10.1016/j.ijggc.2016.07.023
  • HISCOX JD, 1979, CAN J BOT, V57, P1332, DOI 10.1139/b79-163
  • Intergovernmental Panel on Climate Change (IPCC),, 2005, IPCC SPECIAL REPORT
  • Jones DG, 2014, INT J GREENH GAS CON, V28, P300, DOI 10.1016/j.ijggc.2014.06.021
  • Jones HG, 2007, J EXP BOT, V58, P119, DOI 10.1093/jxb/erl118
  • Jones HG, 1988, SCI HORTICULTURAE, V74, P21
  • Kim HJ, 2018, INT J GREENH GAS CON, V72, P152, DOI 10.1016/j.ijggc.2018.03.015
  • Kim You Jin, 2017, [Journal of Climate Change Research, 한국기후변화학회지], V8, P257, DOI [10.15207/JKCS.2017.8.12.257, 10.15531/KSCCR.2017.8.3.257]
  • 김현준, 2017, [Journal of Environmental Impact Assessment, 환경영향평가], V26, P93, DOI 10.14249/eia.2017.26.2.93
  • Kim YJ, 2017, SCI TOTAL ENVIRON, V607, P1278, DOI 10.1016/j.scitotenv.2017.07.030
  • Kirschbaum MUF, 2004, PLANT BIOLOGY, V6, P242, DOI 10.1055/s-2004-820883
  • Klepper B, 1991, PLANT ROOTS HIDDEN H, P265
  • 변재균, 2010, [Journal of Korean Society of Forest Science, 한국산림과학회지], V99, P908
  • Lichtenthaler HK, 1996, J PLANT PHYSIOL, V148, P4, DOI 10.1016/S0176-1617(96)80287-2
  • Marron N, 2003, TREE PHYSIOL, V23, P1225, DOI 10.1093/treephys/23.18.1225
  • MILLARD P, 1992, TREE PHYSIOL, V10, P33, DOI 10.1093/treephys/10.1.33
  • Noomen MF, 2009, INT J REMOTE SENS, V30, P481, DOI 10.1080/01431160802339431
  • Norby RJ, 2006, EVALUATING ECOSYSTEM, V162, P281
  • Oh H, 2018, INT SOC DESIGN CONF, P7, DOI 10.1109/ISOCC.2018.8649911
  • Patil R. H., 2012, DIVERSITY ECOSYSTEMS, V2, P27
  • Pfanz H, 2007, ENVIRON EXP BOT, V61, P41, DOI 10.1016/j.envexpbot.2007.02.008
  • Pierce S, 2009, PLANT SOIL, V325, P197, DOI 10.1007/s11104-009-9969-1
  • POORTER H, 1993, VEGETATIO, V104, P77, DOI 10.1007/BF00048146
  • Price P.N., 2007, CARBON SEQUESTRATION .
  • Rogers HH, 1996, PLANT SOIL, V187, P229, DOI 10.1007/BF00017090
  • Romberger JA, 1963, USDA TECHNICAL B, V1293
  • SCHULZE ED, 1987, BIOSCIENCE, V37, P30, DOI 10.2307/1310175
  • SCHULZE ED, 1983, NETH J AGR SCI, V31, P291
  • Smith T.M., 2015, ELEMENTS ECOLOGY, V9th.edn
  • Stalker L, 2012, ENRGY PROCED, V23, P439, DOI 10.1016/j.egypro.2012.06.039
  • Vodnik D, 2006, GEODERMA, V133, P309, DOI 10.1016/j.geoderma.2005.07.016
  • Wilson EJ, 2003, ENVIRON SCI TECHNOL, V37, P3476, DOI 10.1021/es021038+
  • Wu Y, 2014, INT J GREENH GAS CON, V23, P86, DOI 10.1016/j.ijggc.2014.02.009