Simple model for the calculation of concentration and temperature dependent refractive index of different solutions

Simple model for the calculation of concentration and temperature dependent refractive index of different solutions

Simple analytical models for the calculation of concentration (c) and temperature (T) dependent refractive index i.e., n(c,T) values of the six solutions namely, three electrolyte (KCl, NaCl, and CaCl2), a polar (glucose), a non-polar (ethyl acetate), and a protein (bovine serum albumin) solutions have been proposed. The values of refractive index obtained using our proposed models have been compared with the corresponding values of the refractive index obtained using other reported models and the experimental values. A fairly good agreement between them has been obtained.

___

  • [1] C.-Y. Tan, Y.-X. Huang, Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution, J Chem Eng Data, 60 (2015) 2827–2833.
  • [2] H. F. E. Lugauer, T. Litz, Composition and temperature dependence of the refractive index in Cd1-xMgxTe epitaxial films, Semicond Sci Technol, 9 (1994) 1567−1569.
  • [3] D. P. Subedi, D. R. Adhikari, U. M. Joshi, H. N. Poudel, B. Niraula, Study of temperature and concentration dependence of refractive index of liquids using a novel technique, Kathmandu University J Sci, Engineering and Technology, II (2006) 1-7.
  • [4] Y. Zhou, S. Li, Q. Zhai, Y. Jiang, M. Hu, Compositions, densities, and refractive indices for the ternary systems ethylene glycol+NaCl+H2O, ethylene glycol+KCl+H2O, ethylene glycol+RbCl+H2O, and ethylene glycol+CsCl+H2O at 298.15 K, J Chem Eng Data, 55 (2010) 1289–1294.
  • [5] M. E. Taboada, H. R. Galleguillos, T. A. Graber, Compositions, densities, conductivities, and refractive indices of potassium chloride or/and sodium chloride+PEG 4000+water at 298.15 and liquid-liquid equilibrium of potassium chloride or sodium chloride+PEG 4000+water at 333.15 K, J Chem Eng Data, 50 (2005) 264-269.
  • [6] H. A. Lorentz, The theory of electrons, Dover, New York, (1952).
  • [7] R. M. Waxler, C. E. Weir, Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water, J Res National Bureau of Stand, Section A, Phys and chem, 67A (1963) 163-171.
  • [8] A. Belay, G. T. Assefa, Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights, J Lasers Opt & Phot 05 (2018) 1-5.
  • [9] Z. O. Ettarhouni, M. S. Alhosh, A. A. Jangher, L. M. Abusen, Concentration, temperature and molecular weight dependent on optical properties of poly (vinyl pyrrolidone) in chloroform solutions, Int J Eng Res & Tech, 09 (2020) 239-247.
  • [10] Misto, E. Purwandari, S. A. Arkundato, L. Rohman, B. E. Cahyono, Analyses of concentration and wavelength dependent refractive index of sugar solution using sellmeier equation, in proceedings of the 10th Int Conf Phys and Its App (ICOPIA 2020), 1825 (2021) 012030. 10.1088/1742-6596/1825/1/012030
  • [11] X. Zhu, T. Mai, Z. Zhao, Relationship between refractive index and molar concentration of multi-component solutions, in proceedings of the 4th Int Conf Mach, Mat and Infor Tech App, (2017) 442-446. https://doi.org/10.2991/icmmita-16.2016.81
  • [12] W. Alavia, I. Soto, J. A. Lovera, Modeling of the refractive index for the systems MX+H2O, M2X+H2O, H3BO3+MX+H2O, and H3BO3+M2X+H2O. M = K+, Na+, or Li+ and X = Cl− or SO42−, Processes, 9 (2021) 525. https://doi.org/10.3390/pr9030525
  • [13] V. Kumar, A. Sinha, U. Farooque, Concentration and temperature dependence of the energy gap in some binary and alloy semiconductors, Inf Phys & Tech, 69 (2015) 222-227. https://doi.org/10.1016/j.infrared.2015.02.002
  • [14] H. M. Gomaa, I. S. Yahia, and H. Y. Zahran, Correlation between the static refractive index and the optical bandgap: Review and new empirical approach, Physica B: Cond Matt, 620 (2021) 413246.
  • [15] N. M. Ravindra, S. Auluck, and V. K. Srivastava, On the Pen gap in semiconductors, Phys Stat Sol B 93 (1979) K155-K160.
  • [16] P. J. L. Herve, and L. K. J. Vandamme, General relation between refractive index and energy gap in semiconductors, Infrared Phys. 35 (1994) 609-615.
  • [17] V. Kumar, and J. K. Singh, Model for calculating the refractive index of different materials, Ind J Pure and Appl Phys 48 (2010) 571-574.
  • [18] V. Kumar, A. Sinha, B. P. Singh, A. P. Sinha, and V. Jha, Refractive index and electronic polarizability of ternary chalcopyrite semiconductors, Chin Phys Lett 32 (2015) 127701(1-5).