Zoonotik Bir Patojen Olan Salmonella’nın Bitki Konaklarındaki Davranışı

Salmonella, gıda kaynaklı gastroenterit vakalarının başlıca etkenlerinden biri olarak bilinmekte ve bu özelliği ile halk sağlığı ve ekonomik kayıplar açısından büyük bir risk oluşturmaktadır. Her yıl dünyada meydana gelen yaklaşık 94 milyon salmonelloz vakasının (bunların yaklaşık yüzde 85’i gıda kaynaklıdır) ortalama 150.000 adetinin ölümle sonuçlandığı tahmin edilmektedir. Mevcut sosyal eğilimler, günlük beslenmemizde taze ürünlerin önemli sağlık yararlarını vurgulamaktadır. Bir ironi olarak; taze bitkisel ürünlerin pişirilmeden tüketimi ise, bağırsak kökenli patojenler için giderek daha büyük bir bulaş kaynağı olarak tanımlanmakta ve bu yolla meydana gelen salgınlar hızlı bir şekilde yayılmaktadır. Günümüzde taze ürünler, baharatlar ve sert kabuklu yemişlerle bağlantılı insan kaynaklı patojen salgınlarının sıklığı, hayvansal kaynaklı gıdalarla bağlantılı olanları geçmiş durumdadır. Üretim zincirinde bulunan insan patojenleri; hayvan gübresi, kontamine sulama suyu, biyolojik vektörler (böcek ve hayvanlar) ve kontamine tohum kullanımı gibi temel yollarla bitkisel materyale geçebilmektedir. Bu veriler ışığında birçok bağırsak kökenli patojen, filosfer ile ilişkili bakteriler olarak tanımlanmıştır. Tüm bu bulgulara rağmen Salmonella’nın kontamine ettiği bitki konaklarında kalıcılığı ve enfektivitesi üzerinde çok sayıda bilinmeyen bulunmaktadır. Bu derleme makalede Salmonella’nın bitki yüzeylerine tutunmasını, kolonizasyonunu ve hayatta kalmasını etkileyen faktörlerin yanı sıra, bitki dokularının invazyonu ile devam eden enfeksiyon süreçleri üzerindeki bilgi, çağdaş literatür verileri doğrultusunda tartışılmıştır.

Behavior of Salmonella, a Zoonotic Pathogen, in Plant Hosts

Salmonella is known as one of the main factors of food-borne gastroenteritis, and with this feature, it poses a great risk in terms of public health and economic losses. It is estimated that of the approximately 94 million cases of salmonellosis occurring in the world each year (about 85 percent of these are food-borne), an average of 150,000 result in death. Current social trends highlight the important health benefits of fresh produce in our daily diet. As an irony; Uncooked consumption of fresh herbal products is increasingly identified as a source of transmission for pathogens of intestinal origin, and epidemics occurring in this way are spreading rapidly. Today, the frequency of anthropogenic pathogen outbreaks associated with fresh produce, spices, and nuts has surpassed those associated with foods of animal origin. Human pathogens in the production chain; It can be transferred to plant material by basic means such as the use of animal manure, contaminated irrigation water, biological vectors (insects and animals) and contaminated seeds. In the light of these data, many intestinal pathogens have been identified as phyllo sphere-associated bacteria. Despite all these findings, there are many unknowns on the persistence and infectivity of Salmonella in contaminated plant hosts. In this review article, the factors affecting the attachment, colonization and survival of Salmonella on plant surfaces, as well as the information on the infection processes that continue with the invasion of plant tissues are discussed in the light of contemporary literature data.

___

  • Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Applied and Environmental Microbiology, 71(10): 5685–5691. https://doi.org/10.1128/
  • AEM.71.10.5685-5691.2005
  • Barak JD, Liang A, Narm KE. 2008. Differential attachment to and subsequent contamination of agricultural crops by Salmonella enterica. Applied and Environmental Microbiology, 74(17): 5568–5570. https://doi.org/10.1128/ AEM.01077-08
  • Barak JD, Gorski L, Liang AS, Narm KE. 2009. Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization. Microbiology (Reading, England), 155(Pt11) :3701–3709. https://doi.org/ 10.1099/mic.0.032029-0
  • Barak JD, Kramer LC, Hao LY. 2011. Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Applied and Environmental Microbiology, 77(2): 498–504. https://doi. org/10.1128/AEM.01661-10
  • Barak JD, Schroeder BK. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annual Review of Phytopathology, 50: 241–266. https://doi.org/10.1146/annurev-phyto-081211-172936
  • Batz M, Hoffmann S, MorrisJG. 2014. Disease-outcome trees, EQ5D scores, and estimated annual losses of quality-adjusted life years (QALYs) for 14 foodborne pathogens in the United States. Foodborne Pathogens and Disease, 11(5): 395–402. https://doi.org/10.1089/fpd.2013.1658
  • Berg G, Eberl L, Hartmann A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11): 1673–1685. https://doi. org/10.1111/j.1462-2920.2005.00891.x
  • Berger CN, Brown DJ, Shaw RK, Minuzzi F, Feys B, Frankel G. 2011. Salmonella enterica strains belonging to O serogroup 1,3,19 induce chlorosis and wilting of Arabidopsis thaliana leaves. Environ. Microbiol. 13(5):1299-1308. doi:10.1111/j. 1462-2920.2011.02429.x
  • Brandl MT. 2006. Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44: 367–392. https://doi.org/10.1146- /annurev.phyto.44.070505.143359
  • Brandl MT, Cox CE, Teplitski M. 2013. Salmonella interactions with plants and their associated microbiota. Phytopathology, 103(4): 316–325. https://doi.org/10.1094/PHYTO-11-12- 0295-RVW
  • Cao X, Huang R, Chen H. 2017. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes, International Journal of Food Microbiology, 260(2): 17-26
  • Chalupowicz L, Nissan G, Brandl MT, McClelland M, Sessa G, Popov G, Barash I, Manulis-Sasson S. 2018. Assessing the ability of Salmonella enterica to translocate type III effectors into plant cells. Mol. Plant Microbe Interact. 31: 233– 239
  • Chaudhuri RR, Peters SE, Pleasance SJ, Northen H, Willers C. 2013. Comprehensive identification of Salmonella enterica serovar Typhimurium genes required for infection of BALB/c mice. PLoS Pathog 5: 871-877.
  • Chung S, Lee S. 2016. Crisis Communication Strategy on Social Media and the Public’s Cognitive and Affective Responses: A Case of Foster Farms Salmonella Outbreak, Communication Research Reports, 33(4): 341–348
  • Cook GC, Zumla A. 2008. Malabsorption in the tropics. Manson’s Tropical Diseases, s. 121-126. ISBN: 9781416044703 (Baskı) 9780702043321 (Çevrimiçi).
  • De Moraes MH, Desai P, Porwollik S, Canals R, Perez DR, Chu W, McClelland M, Teplitski M. 2017. Salmonella persistence in tomatoes requires a distinct set of metabolic functions identified by transposon insertion sequencing. Applied and Environmental Microbiology, 83 (5): 4567-4574. https://doi. org/10.1128/AEM.03028-16
  • Deblais L, Miller SA, Rajashekara G. 2021. Impact of Plant Pathogen Infection on Salmonella enterica subsp. enterica Serotype Typhimurium Persistence in Tomato Plants. Journal of food protection, 84(4): 563–571. https://doi.org/10.4315/ JFP-20-291
  • Devleesschauwer B, Bouwknegt,M, Mangen MJJ, Havelaar AH. 2017. Health and economic burden ofCampylobacter. In: Klein G (ed) Campylobacter: Features, Detection, and Prevention of Foodborne Disease, 5:27–40. https://doi:10. 1016/b978-0-12- 803623-5.00002-2
  • Franz E, Visser A, Van Diepeningen A, Klerks M, Termorshuizen A, Vanbruggen A. 2007. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiology, 24(1): 106–112. https://doi:10.1016/j.fm. 2006.03.002
  • Garcia AV, Charrier A, Schikora A, Bigeard J, Pateyron S, de Tauzia-Moreau ML, Evrard A, Mithöfer A, Martin-Magniette M. L, Virlogeux-Payant, I, Hirt H. 2014. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Molecular plant, 7(4): 657– 674. https://doi.org/10.1093/mp/sst145
  • García AV, Hirt H. 2014. Salmonella enterica induces and subverts the plant immune system. Frontiers in Microbiology, 5: 141- 146. https://doi.org/10.3389/fmicb.2014.00141
  • Gurtler JB, Douds DD, Dirks BP, Quinlan JJ, Nicholson AM, Phillips JG, Niemira BA. 2013. Salmonella and Escherichia coli O157:H7 Survival in Soil and Translocation into Leeks (Allium porrum) as Influenced by an Arbuscular Mycorrhizal Fungus (Glomus intraradices). Applied and Environmental Microbiology, 79(6): 1813–1820. https://doi:10.1128/aem. 02855-12
  • Gurtler JB, Harlee NA, Smelser AM, Schneider KR. 2018. Salmonella enterica Contamination of Market Fresh Tomatoes: A Review. Journal of food protection, 81(7): 1193–1213. https://doi.org/10.4315/0362-028X.JFP-17-395
  • Hernández-Reyes C, Schikora A. 2013. Salmonella, a crosskingdom pathogen infecting humans and plants. FEMS microbiology letters, 343(1): 1–7. https://doi.org/10.1111/ 1574-6968.12127
  • Howard MB, Hutcheson SW. 2003. Growth dynamics of Salmonella enterica strains on alfalfa sprouts and in waste seed irrigation water. Applied and environmental microbiology, 69(1): 548–553. https://doi.org/10.1128/ AEM.69.1.548- 553.2003
  • Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang X. 2004. Persistence of Salmonella enterica serovar Typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathogens and Disease, 1(1): 27– 35. https://doi.org/10.1089/1535314 04772914437
  • Jechalke S, Schierstaedt J, Becker M, Flemer B, Grosch R, Smalla K, Schikora A. 2019. Salmonella Establishment in Agricultural Soil and Colonization of Crop Plants Depend on Soil Type and Plant Species. Frontiers in Microbiology, 10: 967-974. https://doi.org/10.3389/fmicb.2019.00967
  • Karampoula F, Doulgeraki AI, Fotiadis C, Tampakaki A, Nychas GE. 2019. Monitoring biofilm formation and microbial interactions that may occur during a Salmonella contamination incident across the Network of a water bottling plant. Microorganisms, 7(8): 236-242. https://doi.org/ 10.3390/microorganisms7080236
  • Kenney SJ, Anderson GL, Williams PL, Millner PD, Beuchat LR. 2006. Migration of Caenorhabditis elegans to manure and manure compost and potential for transport of Salmonella Newport to fruits and vegetables. International journal of food microbiology, 106(1): 61–68. https://doi.org/ 10.1016/j.ijfoodmicro.2005.05.011
  • Kisluk G, Yaron S. 2012. Presence and persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Applied and Environmental Microbiology, 78(11): 4030–4036. https:// doi.org/10.1128/AEM.00087-12
  • Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, Sela S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75(19):6076-6086. doi:10.1128/Aem.01084-09
  • Ledeboer NA, Frye JG, McClelland M, Jones BD. 2006. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 74(6):3156-3169. doi:10.1128/ IAI.01428-05
  • Lipidot A, Yaron S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. Journal of food protection, 72(3): 618–623. https://doi.org/10.4315/0362-028x-72.3.618
  • Matthysse AG, McMahan S. 1998. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Applied and environmental microbiology, 64(7): 2341–2345. https://doi.org/10.1128/AEM.64.7.2341- 2345.1998
  • Noel JT, Arrach N, Alagely A, McClelland M, Teplitski M. 2010. Specific responses of Salmonella enterica to tomato varieties and fruit ripeness identified by in vivo expression technology. PLoS One 5(8):1243-1247. https://doi:10.1371/journal.pone. 0012406
  • Odendall C, Rolhion N, Förster A, Poh J, Lamont DJ, Liu M, Freemont PS, Catling AD, Holden DW. 2012. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host and Microbe, 12(5): 657–668. https://doi.org/10.1016/j.chom.2012.09.011
  • Pollard S, Barak J, Boyer R, Reiter M, Gu G, Rideout S. 2014. Potential Interactions between Salmonella enterica and Ralstonia solanacearum in tomato plants. Journal of Food Protection, 77(2): 320–324. https://doi.org/10.4315/0362- 028X.JFP-13-209
  • Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, Vallad GE, Jones JB. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9): 907–920. https://doi.org/10.1111/ mpp.12244
  • Poza-Carrion C, Suslow T, Lindow S. 2013. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology, 103(4): 341–351. https://doi.org/ 10.1094/PHYTO-09-12-0221-FI
  • Rebuffat S. 2012. Microcins in action: amazing defence strategies of enterobacteria. Biochemical Society transactions, 40(6): 1456–1462. https://doi.org/10.1042/BST20120183
  • Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, Pelletier S, Menanteau P, Baccarini M, Velge P, Hirt H. 2011. Conservation of Salmonella infection mechanisms in plants and animals. PloS One, 6(9): 256-164. https://doi.org/10.1371/journal.pone.0024112
  • Schikora A, Garcia AV, Hirt H. 2012. Plants as alternative hosts for Salmonella. Trends in plant science, 17(5): 245–249. https://doi.org/10.1016/j.tplants.2012.03.007
  • Semenov AM, Kuprianov AA, van Bruggen AH. 2010. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microbial ecology, 60(1): 239–249. https://doi.org/10.1007/s00248-010-9663-0
  • Teplitski M, Noel JT, Alagely A, Danyluk MD. 2012. Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Research International, 45(2): 576–586. https://doi:10.1016/j.foodres.2011.06.020
  • Turnbull AL, Surette MG. 2010. Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella Typhimurium. Res. Microbiol. 161:643-650. doi:10.1016/j.resmic. 2010.06.004
  • Wang ET, Tan ZY, Guo XW, Rodríguez-Duran R, Boll G, Martínez-Romero E. 2006. Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Archives of microbiology, 186(4): 251–259. https://doi.org/10.1007/s00203-006-0141-5
  • Velmourougane K, Prasanna R, Saxena AK. 2017. Agriculturally important microbial biofilms: Present status and future prospects. Journal of basic microbiology, 57(7): 548–573. https://doi.org/10.1002/jobm.201700046
  • Zaragoza WJ, Noel JT, Teplitski,M. 2012. Spontaneous non-rdar mutations increase fitness of Salmonella in plants. Environ. Microbiol. Rep. 4:453-458.
  • Zarkani AA, Schikora A. 2021. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiology, 99: 513-518. https://doi.org/10.1016/j.fm.2021.103833
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Bazı Tescilli Nohut Çeşitlerinin Elek Analiz Değerleri

Hamdi ÖZAKTAN

Metal Akümülatör Bitki olan Brassica nigra L.’nin in vitro Kallus İndüksiyonu ve Sürgün Gelişimi

Abdülrezzak MEMON, Fatma Kusur MEMON

Anadolu-T Etlik Piliç Saf Hatlarının Gelişme ve Karkas Özellikleri

Emrah OĞUZHAN, İsmail ÖZKAN, Sinan ÇAĞLAK, Musa SARICA, Kadir ERENSOY

Damızlık Bıldırcın Rasyonlarına Portakal ve Limon Kabuğu Esansiyel Yağları ve Karışımlarının İlavesinin Performans, Yumurta Kalitesi ve Kuluçka Parametrelerine Etkisi

Yusuf CUFADAR, Behlül SEVİM, Barışcan CURABAY, Seyit Ahmet GÖKMEN, Yılmaz BAHTİYARCA

Sivas- Koyulhisar Orman (Fagus Orientalis Lipsky.) Toprakları ile Tarım Topraklarının Karbon Mineralizasyonu Yönünden Karşılaştırılması

Ahu KUTLAY, Ahmet DEMİRBAŞ, Tolga KARAKÖY, Fikret KOÇBULUT

Amasya İlinde Yetiştirilen Karayaka Koyunlarının Bazı Döl Verim Özellikleri ve Kuzuların Büyüme Performanslarının Belirlenmesi

Emre ŞİRİN, Caner TAMER

Zoonotik Bir Patojen Olan Salmonella’nın Bitki Konaklarındaki Davranışı

Elif Gamze HAS, Mustafa AKÇELİK

Sütteki A1-A2 β-Kazeinin Özellikleri Ve İnsan Sağlığına Etkileri

Sema Yaman FIRINCIOĞLU, Hatice Nur KILIÇ

Kafes Sistemi ve Yerleşim Sıklığının Yumurta Tavuklarının Performansı, Yumurta Kalitesi ve Yumurta Kabuğunun Mikrobiyal Yükü Üzerine Etkisi

Zeynep YARDIM, Mustafa AKŞİT

Rasyona Kakule Tozu İlavesinin Yumurtlayan Bıldırcınlarda Performans, Yumurta Kalitesi ve Serum Biyokimyasal Parametrelerine Etkisi

Osman OLGUN, Esra Tuğçe GÜL, Alpönder YILDIZ, Abdullah ÇOLAK