Türkiye Balık Yemi Sektöründe Kullanılan Ticari Balık ve Balık Yan Ürünleri Yağlarının, Yağ Asitleri Kompozisyonlarının Karşılaştırılması

Balık beslemede yağlar enerji kaynağı olmasının yanı sıra gerekli olan yağ asitlerinin balıklara iletilmesinde de görev alırlar. Özellikle, deniz balıklarının beslenmesinde yüksek zincirli doymamış yağ asitlerine ihtiyaç vardır. Bu çalışmamızda Türkiye balık yemi sektöründe kullanılan bazı tüm vücutlu balıklardan ve balık yan ürünlerinden elde edilen balık yağlarının yağ asidi kompozisyonları tespit edilmiş ve birbiri ile karşılaştırılmaları yapılmıştır. Elde edilen sonuçlara göre tüm vücutlu balıklardan elde edilen yağlarda SFA (Doymuş yağ asitleri) oranlarının %15,57-33,38 arasında olduğu, balık yan ürünlerinden elde edilen yağlarda ise %16,3-31,89 arasında değiştiği saptanmıştır. Ayrıca tüm vücutlu balıklardan elde edilen yağlarda MUFA (Tekli doymamış yağ asitleri) oranlarının %24-38,69 arasında, balık yan ürünleri yağlarında ise %25,81-47,57 arasında değiştiği, tüm balıklardan elde edilen yağlarda PUFA (Çoklu doymamış yağ asitleri) oranlarının %31-36,73 arasında, balık yan ürünleri yağlarında ise %33,54-36,78 arasında değiştiği tespit edilmiştir. Besleme açısından en önemli PUFA’lar dan olan DHA (docosahexaenoic asit) ve EPA (eicosapentaenoic asit) oranlarına baktığımızda, DHA oranlarının tüm balıklardan elde edilen yağlarda %14,08-19,10 arasında, balık yan ürünleri yağlarında ise %3,55-15,28 arasında değiştiği, EPA oranlarının ise tüm balıklardan elde edilen yağlarda %8-9,89 arasında, balık yan ürünleri yağlarında ise %2,63-15,28 arasında değiştiği tespit edilmiştir.

Comparison of Fatty Acid Compositions of Commercial Fish and Fish ByProducts Oils Used in Fish Feed Industry in Turkey

Fats have a function in transmitting the necessary fatty acids to fish as well as being an energy sourcein fish nutrition. In particular, high-chain unsaturated fatty acids are needed for feeding saltwaterfish. In this study, the fatty acid composition of fish oils obtained from some whole-body fish andfish by-products used in the fish-feed industry in Turkey was determined and compared with eachother. Accordingly, SFA (Saturated fatty acids) ratios were in the range of 15.57-33.38% in the oilsobtained from the whole-body fish and in the range of 16.3-31.89% in the oils from fish by-products;MUFA (Monounsaturated fatty acids) ratios were in the range of 24-38.69% in the oils obtainedfrom the whole-body fish and in the range of 25.81-47.57% in the oils from fish by-products; PUFA(Polyunsaturated fatty acids) ratios were in the range of 31-36.73% in the oils obtained from thewhole-body fish and in the range of 33.54-36.78% in the oils from fish by-products. Given DHA(docosahexaenoic acid) and EPA (eicosapentaenoic acid) ratios which are among the most importantPUFAs for nutrition, it was determined that DHA ratios were in the range of 14.08-19.10% in theoils obtained from the whole-body fish and in the range of 3.55-15.28% in the oils from fish byproducts, whereas EPA ratios were in the range of 8-9.89% in the oils obtained from the whole-bodyfish and in the range of 2.63-15.28% in the oils from fish by-products.

___

  • Alkio M, González C, Jäntti M, Aaltonen O. 2000. Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography JAOCS, Journal of the American Oil Chemists' Society, 77 (3): 315-321. Doi: 10.1007/s11746-000-0051-3
  • Bou M, Berge G., Baeverfjord G, Sigholt T, Østbye T, Romarheim O, Ruyter B. 2017. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. British Journal of Nutrition, 117(1): 30-47. Doi: 10.1017/S0007114516004396
  • BSGM. 2017. T.C. Gıda, Tarım ve Hayvancılık Bakanlığı, Balıkçılık ve Su Ürünleri Genel Müdürlüğü. http://www.tarim.gov.tr/sgb/Belgeler/SagMenuVeriler/BSG M.pdf (25.01.2018)
  • Cho CY. 1983. Nutrition and fish health. In: Meyer, F.P., Warren, J.W., Carey, T.G. (Eds.) A guide to integrated fish health management in the Great Lakes basin. Great Lakes Fishery Commission, Michigan. Special Publication 83-2. pp. 63-74.
  • Çelik M, Diler A, Küçükgülmez A. 2005. A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions, Food Chemistry, Volume 92, (4): 637-64. Doi: 10.1016/j.foodchem.2004.08.026
  • David F, Sandra P, Vickers AK. 2005. Column Selection for the Analysis of Fatty Acids Methyl Esters; Agilent Technologies, Agilent Application Notes 59893760EN. Santa Clara, CA, USA.
  • Emir M, Karadağ HO, Ege F, Ceyhan V. 2012. Fish Oil and Fish Meal Production in Turkey: Situation, Bottlenecks and Solutions. 10. Ulusal Tarım Kongresi, 5-7 Eylül, Konya
  • FAO. 2016. Fish meal and Fish oil. Commodity Statistics Uptade. Rome, Italy.
  • Giogios I, Grigorakis K, Nengas I, Papasolomondos S, Papaioannou N, Alexis MN. 2009. Fatty acid composition and volatile compounds of selected marine oils and meals. J. Sci. Food Agric., 89: 88-100. Doi: 10.1002/jsfa.3414
  • Haraldsson GG, Kristinsson B. 1998. Separation of eicosapentaenoic acid and docosahexaenoic acid in fish oil by kinetic resolution using lipase. J Am Oil Chem Soc. 75: 1551–1556. Doi: 10.1007/s11746-998-0093-9
  • Halldorsson A, Kristinsson B, Glynn C. 2003. Separation of EPA and DHA in Fish Oil by Lipase-Catalyzed Esterification with Glycerol J. Amer. Oil Chem. Soc. Volume 80(9): 915-927. Doi: 10.1007/s11746-003-0796-8
  • Hixson SM. 2014. Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J. Aquac. Res. Dev., 5:234 p.. Doi: 10.4172/2155-9546.1000234.
  • Hoşsu B, Korkut AY, Kop A. 2012. Balık Besleme ve Yem Teknolojisi 1. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, Yayın No:50, Bornova
  • Jackson A., Newton RW. 2016. Project to model the use of fisheries by-products in the production of marine ingredients with special reference to omega3 fatty acids EPA and DHA. Special Report, IFFO and University of Stirling, 14 pages https://www.iffo.net/system/files/Report%20IoA%20IFFO% 20project%20Final_0.pdf
  • Jobling M. 2016. Fish nutrition research: past, present and future. Aquacult Int. 24:767–786. Doi: 10.1007/s10499-014-9875-2
  • Korkut AY, Kop,A, Saygı H, Göktepe Ç, Yedek Y, Kalkan T. 2017. General Evaluation of Fish Feed Production in Turkey. Turkish Journal of Fisheries and Aquatic Sciences. 17: 223- 229. Doi: 10.4194/1303-2712-v17_1_25
  • Linder M, Belhaj N, Sautot P, Tehrany EA. 2010. From Krill to Whale: an overview of marine fatty acids and lipid compositions. OCL. 17-4, 194-204. Doi: 10.1051/ocl.2010.0328
  • Kobayashi M, Misangi S, Batka M, Vannuccini S, Dey MM, Anderson JL. 2015. Fish To 2030: The Role And Opportunity For Aquaculture. Aquaculture Economics and Management, 19:282–300. Doi: 10.1080/13657305.2015.994240
  • Monge-Ortiz R, Tomás-Vidal A, Rodriguez-Barreto D, MartínezLlorens S, Pérez JA, Jover-Cerdá M, Lorenzo L. 2017. Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition. 24:605–615. Doi: 10.1111/anu.12595
  • Ratnayake WMN, Galli C. 2009. Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. Ann Nutr Metab, pp: 55:8–43. Doi: 10.1159/000228994
  • Sargent J, Bell G, McEvoy L, Tocher D, Estevez A. 1999. Recent developments in the essential fatty acid nutrition of fish, Aquaculture, Volume 177, Issues 1–4, Pages 191-199. Doi: 10.1016/S0044-8486(99)00083-6
  • SEAFISH. 2016. Fishmeal and fish oil facts and figures. (http://www.seafish.org/media/publications/SeafishFishmeal andFishOilFactsandFigures_201612.pdf) (25.01.2018)
  • Selmi S, Mbarki R, Sadok S. 2008. Seasonal Change of Lipid and Fatty Acid Composition of Little Tuna Euthynnus Alletteratus-By-Products. Nutrition and health. 19:189-194. Doi: 10.1177/026010600801900305
  • Shepherd CJ, Monroig O, Tocher DR. 2017. Future availability of raw materialsforsalmon feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture, 467: 49–62. Doi: 10.1016/j.aquaculture.2016.08.021
  • Sprague M, Betancor MB, Tocher DR. 2017. Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol Lett.39: 1599-1611. Doi: 10.1007/s10529-017-2402-6
  • Sprague M, Dick JR, Tocher DR. 2016. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci. Rep. 6, 21892; Doi: 10.1038/srep21892. Doi: 10.1038/srep21892
  • Susena SH, Saraswati Hayati S, Izaki AF. 2014. Fatty acid composition of some potential fish oil from production centers in Indonesia. Oriental Journal of Chemistry. 30(3): 975-980. Doi: 10.13005/ojc/300308
  • Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41: 717–732. Doi: 10.1111/j.1365-2109.2008.02150.x
  • Tocher DR. 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449, pp. 94–107. Doi: 10.1016/j.aquaculture.2015.01.010
  • Torrecillas S, Robaina L, Caballero MJ, Calandra G, Karalazos V, Kaushik S, Izquierdo MS. 2017. Combined replacement of fishmeal and fish oil in European sea bass (Dicentrarchus labrax): production performance, tissue composition and liver morphology. Aquaculture, 474: 101–112. Doi: 10.1016/j.aquaculture.2017.03.031
  • Wang Y, Li M, Filer K, Xue Y, Ai Q, Mai K. 2017. Replacement of fish oil with a DHA-rich Schizochytrium meal on growth performance, activities of digestive enzyme and fatty acid profile of Pacific white shrimp (Liptopenaeus vannamei) larvae. Aquac. Nutr. Vol:23(5): 1113-1120. Doi: 10.1111/anu.12479
  • World Bank. 2013. Fish to 2030: Prospects for Fisheries and Aquaculture. World Bank Report Number 83177-GLB. 81 pages.