Streptomyces Türlerine Ait Transglutaminaz Üretimine Fermantasyon Koşulları ve Stres Faktörlerinin Etkisi

Gıda proseslerinde transglutaminaz (TG) enziminin kullanımı çapraz bağlanma reaksiyonları aracılığı ile proteinlerin fonksiyonel özelliklerinde önemli değişimler meydana getirmektedir. TG enzimi bu değişimleri, açil transfer reaksiyonlarını katalizleyerek proteinler, peptidler, çeşitli primer aminler arasında kovalent çapraz bağlar oluşturarak gerçekleştirmektedir. Hayvansal ve mikrobiyal kaynaklar (Streptomyces sp.) transglutaminaz enziminin ticari olarak üretiminde kullanılabilmektedir. Hayvansal kaynaklı TG enziminin kalsiyum iyonlarına ihtiyaç duyması ve üretiminin daha maliyetli olması sebebi ile mikrobiyal kaynaklı TG enzimi gıda ve diğer endüstrilerde kullanım açısından öncelik kazanmaktadır. Mikrobiyal TG (mTG) enzimi ve üretiminin artırılmasına yönelik çalışmalar, son derece dinamik bir araştırma alanı olup sürekli gelişim göstermektedir. Son yıllarda farklı fermantasyon stratejileri ve rekombinant DNA teknikleri kullanılarak üretim prosesleri yeniden optimize edilmeye çalışılmaktadır. Mikrobiyal TG enzim üretiminde temel olarak substrat optimizasyonu, metabolik optimizasyon ve fermantasyon şartlarının kontrolü (pH, çözünmüş oksijen, sıcaklık, karıştırma ve havalandırma hızı, vb.) gibi bazı klasik stratejiler üzerinde oldukça yoğun ve farklı çalışmalar yapılmaktadır. Diğer taraftan sınırlı sayıda yapılan bazı çalışmalarda mTG üretiminin arttırılmasına yönelik yeni bir strateji olarak mikrobiyal stres faktörlerinin (ani sıcaklık ve pH değişimi, bazı tuz ve alkollerin varlığı, vb.) etkisi de incelenmeye ve çalışılmaya başlanmıştır. Bu derlemede birçok alanda giderek kullanımı artan mTG enzim üretiminin daha verimli ve düşük maliyetli gerçekleşebilmesi için, enzim biyosentezinin arttırılmasına yönelik bazı stratejiler üzerinde durulmuştur.

The Effect of Fermentation Conditions and Stress Factors on Production of Transglutaminase by Streptomyces spp.

The use of transglutaminase (TG) enzyme in food processing has led to considerable changes in the functional properties of proteins through cross-linking reactions. The TG enzyme catalyses the acyl transfer reactions leading to the formation of covalent crosslinks between various primary amines, peptides, and proteins, thereby causing these changes. Animal and microbial sources (Streptomyces sp.) can be used for commercial production of transglutaminase. Microbial-derived TG enzyme takes priority in food and other industries because of the need for calcium ions of animal-derived TG enzyme and the cost of production. Efforts to increase microbial transglutaminase (mTG) enzyme production are continuously developing and are a highly dynamic research area. In recent years, attempts have been made to re-optimize production processes using different fermentation strategies and recombinant DNA techniques. For mTG enzyme production, intensive and different studies are being carried out on some classical strategies such as substrate optimization, metabolic optimization and control of fermentation conditions (pH, dissolved oxygen, temperature, mixing and aeration rate, etc.). On the other hand, the impact of microbial stress factors (rapid change of temperature and pH, presence of certain salts and alcohols, etc.) as a new strategy to increase mTG production has also begun to be investigated and studied in a limited number of studies. In this review, several strategies for increasing the biosynthesis of the enzyme have been emphasized in order to make the production of mTG enzymes more efficient and cost-effective by increasing the use in many fields.

___

  • Aalami M, Leelavathi K. 2008. Effect of microbial transglutaminase on spaghetti quality. J. Food Sci., 73 (5): DOI:10.1111/j.1750-3841.2008.00741.x; PMID:18576974.
  • Ando H, Adachi M, Umeda K. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agr. Biol. Chem., 53: 2613-2617. DOI:10.1271/bbb1961.53.2613.
  • Bech L, Nørrevang IA, Halkier T, Rasmussen G, Schäfer T, Andersen JT. 2001. U.S. Patent No. 6,190,879. Washington, DC: U.S. Patent and Trademark Office.
  • Bhattacharyya B, Pal S, Sen S. 1998. Antibiotic production by Streptomyces hygroscopicus D1.5, cultural effect. Rev. Microbial., 29(3): 254-257. DOI:10.1590/S0001- 37141998000300003.
  • Bourneow C, Benjakul S, Sumpavapol P, Kittikun A. 2012. Isolation and Cultivation of transglutaminase producing bacteria from seafood processing factories. Innov. Rom. Food Biotechnol., 10: 28-39.
  • Celler K, Picioreanu C, van Loosdrecht MCM, van Wezel GP. 2012. Structured morphological modeling as a framework for rational strain design of Streptomyces species. Antonie Van Leeuwenhoek, 102(3): 409-423. DOI:10.1007/s10482- 012-9760-9; PMID:22718122.
  • Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Zhang L. 2013. Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl. Microbiol. Biotechnol., 97(9): 3885-3892. DOI:10.1007/s00253-012-4681-0; PMID:23324803.
  • Clarke D, Mycek M, Neidle A, Waelsch H. 1959. The incorporation of amines into protein. Arch. Biochem. Biophys., 79: 338–354. DOI:10.1016/0003-9861(59)90413-8.
  • Cui L, Du G, Zhang D, Liu H, Chen J. 2007. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chem., 105 (2): 612-618. DOI:10.1016/j.foodchem.2007.04.020.
  • Doull JL, Singh AK, Hoare M, Ayer SW. 1994. Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: Effects of heat shock, ethanol treatment and phage infection. J. Ind. Microbiol., 13(2): 120-125. DOI:10.1007/ BF01584109; PMID:7764672.
  • Fernández MJ, Adrio JL, Piret JM, Wolfe S, Ro S, Demain AL. 1999. Stimulatory effect of growth in the presence of alcohols on biotransformation of penicillin G into cephalosporin-type antibiotics by resting cells of Streptomyces clavuligerus NP1. Appl. Microbiol. Biotechnol., 52: 484–488. DOI:10.1007/s002530051549; PMID:10570794.
  • Gabdrakhmanova L, Vishniakov I, Sharipova M, Balaban N, Kostrov S, Leshchinskaya I. 2005. Salt stress induction of glutamyl endopeptidase biosynthesis in Bacillus intermedius. Microbiol. Res., 160: 233–242. DOI:10.1016/j.micres.2004.05.005; PMID:16035234.
  • Gaspar ALC, Goes-Favoni DSP. 2015. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem., 171: 315-322. DOI:10.1016/j.foodchem.2014.09.019; PMID:25308675.
  • Haq I, Sikander A, Qadeer MA, Javed I. 2003. Stimulatory effect of alcohols (methanol and ethanol) on citric acid productivity by a 2-deoxy d-glucose resistant culture of Aspergillus niger GCB-47. Bioresource Technol., 86: 227–233.
  • DOI:10.1016/S0960-8524(02)00172-4; PMID:12688464. Hasani A, Kariminik A, Issazadeh K. 2014. Streptomycetes: characteristics and their antimicrobial activities. Int. J. Adv. Biol. Biomed. Res., 2: 63–75.
  • Heck T, Faccio G, Richter M, Thöny-Meyer L. 2013. Enzymecatalyzed protein crosslinking. Appl. Microbiol. Biotechnol., 97(2): 461-475. DOI:10.1007/s00253-012-4569-z; PMID: 23179622.
  • Henzler HJ, Schedel M. 1991. Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess. Eng., 7(3): 123-131. DOI:10.1007/BF00369423.
  • Himabindu M, Potumarthi R, Jetty A. 2007. Enhancement of gentamicin production by mutagenesis and non-nutritional stress conditions in Micromonospora echinospora. Process Biochem., 42(9): 1352–1356. DOI:10.1016/j.procbio.2007 .05.002.
  • Ho ML, Leu SZ, Hsieh JF, Jiang ST. 2000. Technical approach to simplify the purification method and characterization of microbial transglutaminase produced from Streptoverticillium ladakanum. J. Food Sci., 65 (1): 76-80. DOI:10.1111/j.1365-2621.2000.tb15959.x.
  • Kashiwagi T, Yokoyama KI, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki EI. 2002. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem., 277(46): 44252-44260. DOI:10.1074/jbc. M203933200; PMID:1222108.
  • Keiser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. General introduction to actinomycete biology. In: ‘Practical Streptomyces Genetics’. The John Innes Foundation, Basım Yeri: England. ISBN 0-7084-0623-8.
  • Kieliszek M, Misiewicz A. 2014. Microbial transglutaminase and its application in the food industry: A review. Folia Microbiol., 59 (3): 241-250. DOI:10.1007/s12223-013- 0287-x; PMID:24198201.
  • Kim ES, Song JY, Kim DW, Chater KF, Lee KJ. 2008. A possible extended family of regulators of sigma factor activity in Streptomyces coelicolor. J. Bacteriol., 190(22): 7559-7566. DOI:10.1128/JB.00470-08; PMID:18790871.
  • Kuraishi C, Yamazaki K, Susa Y. 2001. Transglutaminase: its utilization in the food industry. Food Rev. Int., 17 (2): 221- 246. DOI:10.1081/FRI-100001258.
  • Lantto R. 2007. Protein cross-linking with oxidative enzymes and transglutaminase: effects in meat protein systems. VTT Publ., 642: 1-114.
  • Lee JS, Hah YC, Roe JH. 1993. The induction of oxidative enzymes in Streptomyces coelicolor upon hydrogen peroxide treatment. Microbiology, 139(5): 1013-1018. DOI:10.1099/00221287-139-5-1013.
  • Lin YS, Chao ML, Liu CH, Tseng M, Chu WS. 2006. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem., 41(3): 519-524. DOI:10.1016/ j.procbio.2005.09.009.
  • Luciano FB, Arntfield SD. 2012. Use of transglutaminases in foods and potential utilization of plants as a transglutaminase source;review. Biotemas, 25(4): 1–11. DOI: 10.5007/2175-7925.2012v25n4p1.
  • Macedo JA, Sette LD, Sato HH. 2007. Optimization of medium composition for transglutaminase production by a Brazilian soil Streptomyces sp. Electron. J. Biotechnol., 10(4): 618- 626. DOI: 10.2225/vol10-issue4-fulltext-10.
  • Macedo JA, Cavallieri ALF, Da Cunha RL, Sato HH. 2010. The effect of transglutaminase from Streptomyces sp. CBMAI 837 on the gelation of acidified sodium caseinate. Int. Dairy J., 20 (10): 673-679. DOI:10.1016/j.idairyj.2010.03.014.
  • Manteca A, Sanchez J, Jung HR, Schwämmle V, Jensen ON. 2010. Quantitative proteomics analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism coincides with hypha differentiation. Mol. Cell Proteomics, 9(7): 1423-1436. DOI:10.1074/mcp.M900449-MCP200; PMID:20224110.
  • Mariniello L, DiPierro P, Giosafatto CVL, Sorrentino A, Porta R. 2008. Transglutaminase in food biotechnology. In Recent Research Developments in Food Biotechnology. Enzymes as Additives or Processing Aids, Edited by: Porta, R., Di Pierro, P. and Mariniello, L. 185–211. Kerala, India: Research Signpost, Fort P.O.
  • Mehta K, Eckert RL. 2005. Transglutaminases: family of enzymes with diverse functions (Vol. 38). USA, Karger Medical and Scientific Publishers, ISBN:1660-8984.
  • Min B, Green BW. 2008. Use of microbial transglutaminase and nonmeat proteins to improve functional properties of low NaCl, phosphate-free patties made from channel catfish (Ictalurus punctatus) belly flap meat. J. Food Sci., 73(5): 218–226. DOI:10.1111/j.1750-3841.2008.00758.x; PMID: 18576994.
  • Motoki M, Seguro K. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Tech., 9(5): 204-210. DOI:10.1016/S0924-2244(98)00038-7.
  • Nagy V, Szakacs G. 2008. Production of transglutaminase by Streptomyces isolates in solid state fermentation. Lett. Appl. Microbiol., 47(2): 122-127. DOI:10.1111/j.1472-765X. 2008.02395.x; PMID:18673432.
  • Nakata K, Yoshimoto A, Yamada Y. 1999. Promotion of antibiotic production by ethanol, high NaCl concentration, or heat shock in Pseudomonas fluorescens S272. Biosci. Biotechnol. Biochem., 63: 293–297. DOI:10.1271/bbb. 63.293; PMID:10192908.
  • Negus SS. 2001. A Novel Microbial Transglutarninase Derived From Streptoverticillium baldaccii. Doctoral dissertation, Australia, Griffith University.
  • Ngo KX, Umakoshi H, Ishi H, Bui HT, Shimanouchi T, Kuboi R. 2009. Oxidative/heat stress enhanced production of chitosanase from Streptomyces griseus cells through its interaction with liposome. J. Biosci. Bioeng., 108: 471-476. DOI:10.1016/j.jbiosc.2009.06.010; PMID:19914578.
  • Ngo KX, Umakoshi H, Shimanouchi T, Jung HS, Morita S, Kuboi R. 2005. Heat-enhanced production of chitosanase from Streptomyces griseus in the presence of liposome. J. Biosci. Bioeng., 100: 495-501. DOI:10.1263/jbb.100.495; PMID:16384787.
  • Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li X, Thompson CJ. 2003. Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress induced proteins and central metabolic enzymes. Mol. Microbiol., 48(5): 1289-1303. DOI:10.1046/j.1365-2958.2003.03529.x; PMID:12787356.
  • Pasternack R, Dorsch S, Otterbach JT, Robonek IR, Wolf S, Fuchbauer HL, 1998. Bacterial pro-TGase from Streptoverticillium mobaraense purification, characterization and sequence of the zymogen. Eur. J. Biochem., 257: 570-576. DOI:10.1046/j.1432- 1327.1998.2570570.x; PMID:9839945.
  • Portilla-Rivera OM, Téllez-Luis SJ, Ramírez de León JA, Vázquez M. 2009. Production of microbial transglutaminase on media made from sugar cane molasses and glycerol. Food Technol. Biotechnol., 47(1): 19-26. ISSN 1330-9862.
  • Rattleff S. 2013. Heterologous protein production in Streptomyces lividans. Doctoral dissertation, Phd thesis, Technical University of Denmark, Denmark. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, Van Wezel GP. 2008. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO reports, 9(7): 670-675. DOI:10.1038/embor.2008.83; PMID:18511939.
  • Romeih E, Walker G. 2017. Recent advances on microbial transglutaminase and dairy application. Trends Food Sci. Tech., 62, 133-140. DOI:10.1016/j.tifs.2017.02.015.
  • Ryszka L, Krakowiak A, Trzcinska M, Czakaj J. 2009. Effect of culture conditions on biosynthesis of transglutaminase by Streptoverticillium mobaraense. Pamiętnik Puławski,151(2).
  • Schoolfield RM, Sharpe PJH, Magnuson CE. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol., 88(4): 719-731. DOI:10.1016/0022-5193(81)90246-0.
  • Souza, C.F.De., Flôres, S.H., ve Ayub, M.A.Z., 2006. Optimization of medium composition for the production of transglutaminase by Bacillus circulans BL32 using statistical experimental methods. Process Biochem., 41(5): 1186-1192.
  • Téllez-Luis SJ, González-Cabriales JJ, Ramírez JA, Vázquez M. 2004a. Production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 grown on media made from hydrolysates of sorghum straw. Food Technol. Biotechnol., 42(1): 1-4. ISSN 1330-9862.
  • Téllez-Luis SJ, Ramírez JA, Vázquez M. 2004b. Production of transglutaminase by Streptoverticillium ladakanum NRRL- 3191 using glycerol as carbon source. Food Technol. Biotechnol., 42(2): 75-81. ISSN 1330-9862.
  • Umakoshi H, Kuboi R, Komasawa I, Tsuchido T, Matsumura Y. 1998. Heat-induced translocation of cytoplasmic β- galactosidase across inner membrane of Escherichia coli. Biotechnol. Prog., 14: 210-217. DOI:10.1021/bp970111a; PMID:9548771.
  • Völker U, Mach H, Schmid R, Hecker M. 1992. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. Microbiology, 138(10): 2125-2135. DOI:10.1099/ 00221287-138-10-2125; PMID:1362210.
  • Wang C, Long X, Mao X, Dong H, Xu L, Li Y. 2010. SigN is responsible for differentiation and stress responses based on comparative proteomic analyses of Streptomyces coelicolor wild-type and sigN deletion strains. Microbiol. Res., 165(3): 221-231. DOI:10.1016/j.micres.2009.05.003; PMID:19700271.
  • Wang L, Ridgway D, Gu T, Moo-Young M. 2005. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol. Adv., 23(2): 115-129. DOI:10.1016/j.biotechadv. 2004. 11.001; PMID:15694123.
  • Whitaker A. 1980. Fed-batch culture. Process Biochem., 15(4): 10-18. Williams S, Goodfellow M, Alderson G, Wellington E, Sneath
  • P, Sackin M. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol., 129: 1743-1813. DOI:10.1099/00221287-129-6-1743; PMID:663 1406.
  • Yan G, Du G, Li Y, Chen J, Zhong J. 2005. Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: application of a two-stage agitation speed control strategy. Process Biochem., 40(2): 963-968. DOI:10.1016/j.procbio.2004.04.002.
  • Yildirim M, Hettiarachchy N. 1998. Properties of films produced by Cross-linking whey proteins and 11S globulin using transglutaminase. J. Food Sci., 63(2): 248–252. DOI:10.1111/j.1365-2621.1998.tb15719.x.
  • Yüksel Z, Erdem YK. 2007. Gıda endüstrisinde transglutaminaz uygulamaları: 1- Enzimin genel özellikleri. Gıda, 32 (6): 287-292.
  • Zhang D, Zhu Y, Chen J. 2009. Microbial transglutaminase production: Understanding the mechanism. Biotechnol. Genet. Eng., 26 (1): 205-222. DOI:10.5661/bger-26-205.
  • Zhang L, Zhang L, Han X, Du M, Zhang Y, Feng Z, Zhang Y. 2012a. Enhancement of transglutaminase production in Streptomyces mobaraensis as achieved by treatment with excessive MgCl2. Appl. Microbiol. Biotechnol., 93(6): 2335-2343. DOI:10.1007/s00253-011-3790-5; PMID: 22170107.
  • Zhang L, Zhang L, Yi H, Du M, Zhang Y, Han X, Feng Z, Li J, Jiao Y, Zhang Y, Guo C. 2012b. Enhancement of transglutaminase production in Streptomyces mobaraensis DSM 40587 by non-nutritional stress conditions: Effects of heat shock, alcohols, and salt treatments. Korean J. Chem. Eng., 29: 913-917. DOI:10.1007/s11814-011-0274-3.
  • Zheng M, Du G, Chen J. 2002a. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme Microb. Technol., 31(4): 477-481. DOI:10.1016/S0141-0229(02) 00127-8.
  • Zheng M, Du G, Chen J, Lun S. 2002b. Modelling of temperature effects on batch microbial transglutaminase fermentation with Streptoverticillium mobaraense. World J. Microbiol. Biotechnol., 18(8): 767-771. DOI:10.1023/A: 1020472908615.
  • Zheng M, Du G, Guo W, Chen J. 2001. A temperature-shift strategy in batch microbial transglutaminase fermentation. Process Biochem., 36(6): 525-530. DOI:10.1016/S0032- 9592(00)00229-6.
  • Zhu Y, Rinzema A, Tramper J, Bol J. 1995. Microbial transglutaminase: a review of its production and application in food processing. Appl. Microbiol. Biotechnol., 44(3-4): 277-282. DOI:10.1007/BF00169916.
  • Zhu Y, Rinzema A, Tramper J, Bol J. 1996. Medium design based on stoichiometric analysis of microbial transglutaminase production by Streptoverticillium mobaraense. Biotech. Bioeng., 50(3): 291-298. DOI:10.1002/(SICI)1097-0290(19960505)50:3<291:AIDBIT8> 3.0.CO;2-B; PMID:18626957.
  • Zhu Y, Rinzema A, Tramper J, Bruin ED, Bol J. 1998. Fedbatch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense. Appl. Microbiol. Biot., 49: 251-257. DOI:10.1007/s002530051165.
  • Zhu Y, Tramper J. 2008. Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol., 26: 559-565. DOI:10.1016/j.tibtech.2008.06. 006; PMID:18706723.
  • Zilda DZ. 2014. Microbial transglutaminase: source, production and its role to improve surimi properties. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 9(1): 35-44. DOI:10.15578/squalen.v9i1.82.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)