Near Infrared Reflectance Spectroscopy and Multivariate Analyses for Fast and Non-Destructive Prediction of Corn Seed Germination

The application of near-infrared reflectance spectroscopy (NIRS) and multivariate analysis for determining the seed germination rate of corn genotypes was assessed. Seed samples about 90 gr belong to commercial and local corn varieties at various ages were scanned with FT-NIRS on the reflectance mode from 1000 to 2500 nm wavelength. Filter paper technique showed the seed germination rates varied between 18-100% depending on the genotypes after 7 days at ±25°C. Partial least squares regression (PLSR) was applied to the reference values corresponding to the spectra. The best statistical results obtained from the pre-treatment combinations of Smooth Savitzky-Golay 9 Points (sg9), MSC full and normalization to unit length (nle). The regression coefficient of calibration (R2C) and prediction (R2P) of the created NIRS calibration via chemometric software NIRCal are realized 0.97 and 0.98 respectively for the property of corn germination rate. The standard error of both calibration (SEC) and prediction (SEP) were almost overlapping (4.17%, 4.61% respectively). The prediction accuracy of the final NIRS model was quite reasonable with the acceptable root mean standard error of prediction (RMSEP) as 8.88%. According to the residual predictive deviation (RPD) index (4.18), the accuracy of the NIRS model regarded as in the best category. Therefore, the NIRS model developed here is sufficient to predict the corn seed germination rate very fast and non-destructively without using any regents.

___

Al-Amery M, Geneve RL, Sanches MF, Armstrong PR, Maghirang EB, Lee C, Hildebrand DF. 2018. Near-infrared spectroscopy used to predict soybean seed germination and vigour. Seed Science Research, 1-8. doi:10.1017/ s0960258518000119.

Bellon-Maurel V, Fernandez-Ahumada E, Palagos P, Roger JM, McBratney AB. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29 (9): 1073-1081. doi:10.1016/j.trac.2010.05.006

Burns D, Ciurczak E. 2008. Handbook of Near-Infrared Analysis. 3rd Ed. CRC Press. Boca Raton, FL. ISBN 9780849373930

Büchi 2013. Operation manual, NIRCal 5.5, Version A. BÜCHI Labortechnik AG, Flawil, Switzerland.

Chang CW, Laird DA, Mausbach MJ, Hurburgh CR. 2001. Nearinfrared Reflectance Spectroscopy - Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 65: 480-490. doi:10.2136/sssaj2001. 652480x.

Dupuy N, Galtier O, Dréau Y Le, Pinatel C, Kister J, Artaud J. 2010. Chemometric Analysis of Combined NIR and MIR Spectra to Characterize French Olives. European Journal of Lipid Science and Technology, 112 (4): 463-475. doi:10.1002/ejlt.200900198

Esbensen KH. 2009. Multivariate Data Analysis – In Practice. 5th Edition. Camo Software AS, Oslo, Norway. ISBN 82- 993330-3-2.

Esbensen KH, Geladi P, Larsen A. 2014. The RPD Myth. NIR News, 25(5): 24–28. doi:10.1255/nirn.1462

Fagan CC, Everard CD, McDonnell K. 2011. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresource Technology 102: 5200–5206. doi: 10.1016/j.biortech.2011.01.087

Ferreira MH, Braga Jez WB, Sena MM. 2013. Development and validation of a chemometric method for direct determination of hydrochlorothiazide in pharmaceutical samples by diffuse reflectance near infrared spectroscopy. Microchemical Journal, 109: 158–164. doi:10.1016/j.microc.2012.03.008

Huang M, Wang QG, Zhu QB, Qin JW, Huang G. 2015. Review of seed quality and safety tests using optical sensing technologies. Seed Science & Technology, 43: 337-366. doi:10.15258/sst.2015.43.3.16

ISTA, 2008, International Rules for Seed Testing. International Seed Testing Association, Bassersdorf. Switzerland. ISSN: ISBN 0251-0952.

Jin X, Chen X, Xiao L, Shi C, Chen L, Yu B, Yi Z, Yoo JH, Heo K, YuCY, Yamada T, SacksEJ, Peng J. 2017. Application of visible and near-infrared spectroscopy to classification of Miscanthus species. PLoS ONE, 12(4): e0171360. doi:10.1371/ journal.pone.0171360

Kalpana R, Madhava Roa KV. 1995. On the ageing mechanism in pigeonpea (Cajanus cajan (L) Millsp.) seeds. Seed Science & Technology, 23: 1–9.

Kosmowski F, Worku T. 2018. Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia. PLoS ONE, 13(3): e0193620. doi:10.1371/journal.pone.0193620

McDonald MB. 1999. Seed deterioration: physiological, repair and assessment. Seed Science & Technology, 27: 177–237.

Qiu G, Lü E, Lu H, Xu S, Zeng F, Shui Q. 2018. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors, 18(4): 1010. doi:10.3390/s18041010

Rahman A, Cho B. 2016. Assessment of seed quality using nondestructive measurement techniques: A review. Seed Science Research, 26(4): 285-305. doi:10.1017/S0960258516000234

Salgó A, Gergely S. 2012. Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science, 56: 31- 38. doi:10.1016/j.jcs.2012.04.011

Thapliyal RC, Connor KF. 1997. Effect of accelerated ageing on viability, leachate exudation and fatty acid content of Dalbergia sissoo Roxb. Seeds. Seed Science & Technology, 25: 31–319.

Tigabu M, Odén PC. 2004. Rapid and non-destructive analysis of vigour of Pinus patula seeds using single seed near infrared transmittance spectra and multivariate analysis. Seed Science and Technology, 32(2): 593-606. doi:10.15258/ sst.2004. 32.2.28.

Walters C. 1998. Understanding the mechanisms and kinetics of seed ageing. Seed Science Research, 8: 223-244. doi:10.1017/ S096025850000413X

Williams PC. 2001. Implementation of Near-Infrared Technology. In: Williams P.C., Norris K., editors. NearInfrared Technology in the Agricultural and Food Industries. 2 nd ed. American Association of Cereal Chemists; St. Paul, MN, USA. ISBN-10: 1891127241

Youngentob KN, Renzullo LJ, Held AA, Jia XP, Lindenmayer DB, Foley WJ. 2012. Using imaging spectroscopy to estimate integrated measures of foliage nutritional quality. Methods Ecol. Evol., 3: 416-426. doi:10.1111/j.2041-210X.2011. 00149.x

Zhang T, W Wei, B Zhao, R Wang, M Li, L Yang, J Wang, Q Sun. 2018. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds. Sensors, 18 (3): 813. doi:10.3390/s18030813.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: 12
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Yumurta Verimi Üzerine Bazı Özelliklerin Etkisinin Regresyon Analiz Yöntemlerinden Bagging Mars ile Belirlenmesi ve R Uygulaması

Demet CANGA, Mustafa BOĞA

Effects of Different Tillage, Rotation Systems and Nitrogen Levels on Wheat Yield and Nitrogen Use Efficiency

Nihal KAYAN, Nazife Gözde AYTER ARPACIOĞLU, İmren KUTLU, Mehmet Sait ADAK

Yarı Entansif Koşullarda Yetiştirilen Sağlıklı Norduz ve Kıl Keçilerinin Serum Mineral Düzeyleri Üzerine Bir Araştırma

Ayşe Özge DEMİR, Ferda KARAKUŞ, SUNA AKKOL

Effects of Leonardite and Mineral Fertilizer Applications on Plant Growth and Soil Quality of Garlic (Allium sativum L.)

TEMEL SARIYILDIZ

A Study on Udder Health Management Practices, Reproductive Disorders and Subclinical Mastitis in Buffalo Herds in Coastal Region of Bangladesh

Dibyendu BİSWAS, SM HANİF, Eaftekhar Ahmed RANA, AKM Mostafa ANOWER

Bitkilerde Bulunan Fitokimyasalların Biyolojik Aktiviteleri

TUĞBA DEMİR, Özlem AKPINAR

Detection of Powdery Mildew Growth in Hazelnut Plant Using PCR

Ulku BAYKAL

Structural Modifications of the Small Intestine of the African Giant Rat (Cricetomys gambianus, Waterhouse): Implications for Dietary demands and Improved Domestication

Samuel Gbadebo OLUKOLE, Adenike Olusola OLATUNJI-AKİOYE, Oluwaseyi Oyeniyi OWOLABİ, Bankole Olusiji OKE

Effect of Primed and Un-Primed Seeds on Germination, Growth Performance and Yield in Okra [Abelmoscus esculentus (L.) Moench]

Ankit ADHİKARİ, Amit SHRESTHA

Glutensiz Bazı Bitkilere (Amarantus mantegazzianus, Chenopodium quinoa Willd., Eragrostis tef [Zucc]Trotter, Salvia hispanica L.) Ait Tohum Özelliklerinin Belirlenmesi Üzerine Bir Araştırma

Zeynep DUMANOĞLU, HAKAN GEREN