Karpuz Çekirdeklerinin Bazı Kimyasal Özellikleri ve Kavurma İşleminin Karpuz Çekirdeği Yağının Oksidasyonu Üzerine Etkisi

Türkiye kuruyemiş üretimi ve tüketimi açısından dünyanın önde gelen ülkeleri arasında yer almakta ve birçok ürün kuruyemiş olarak kullanılmaktadır. Bu ürünlerden biri de karpuz çekirdeğidir. Bu çalışmada Mardin, Diyarbakır ve Batman illerinden temin edilen ve çerezlik olarak tüketilen karpuz çekirdeklerinin bazı kimyasal bileşenleri belirlenmiştir. Ayrıca Batman ilinden temin edilen karpuz çekirdekleri 140, 160 ve 180°C’de 60 dakika boyunca kavrulmuş ve kavurma işleminin karpuz çekirdeği yağının oksidatif stabilitesi üzerine etkileri araştırılmıştır. Karpuz çekirdeklerinin kuru madde, kül, yağ, protein, toplam tokoferol ve toplam fenolik madde miktarlarının sırasıyla %95,39- 95,58, %3,10-3,38, %51,65-52,75, %32,76-34,87, 360,12-393,16 mg/kg ve 427,75-478,80 mg GAE/kg yağsız kısım aralıklarında değiştiği tespit edilmiştir. Karpuz tohumlarının yağ asidi bileşimi incelendiğinde ise elzem yağ asidi olan linoleik asit açısından (%60,74) önemli bir kaynak olduğu ve oleik asidi de (%20,48) yüksek miktarda içerdiği belirlenmiştir. Yapılan çalışmada karpuz çekirdeklerinin yağ asidi bileşiminin kavurma işleminden etkilenmediği ve peroksit sayısının ise 1,57- 3,0 meq O2/kg yağ olarak dar bir aralıkta değiştiği gözlenmiştir. Buna karşın kavurma sıcaklığının, örneklerin peroksit değeri üzerindeki etkisi istatistik açıdan önemli bulunmuştur. K232 değerleri örneklerde kavurma süresince 2,54 ile 4,01 arasında değişirken, K268 değerleri ise 4,99 ile 5,04 arasında değişmiştir. 180°C’de kavrulmuş örneklerin K232 ve K268 değerleri 140 ve 160°C’de kavrulmuş olanlardan istatistiksel olarak farklı bulunmuştur. Çalışma sonucunda karpuz çekirdeklerinin elzem yağ asidi olan linoleik asidi önemli miktarlarda içerdiği ve kavurma işleminin yağ oksidasyon parametrelerinde düşük düzeylerde değişimlere neden olduğu tespit edilmiştir

Some Chemical Properties of Watermelon Seeds and the Effect of Roasting Process on the Oxidation of Watermelon Seed Oil

Turkey is among the world’s leading countries in terms of production and consumption of dried fruits and nuts and several dried fruit and nut products are used as snack foods in Turkey. Watermeloon seed is one of these snack foods. In this study, some chemical compounds of watermelon seeds, consumed as a snack, supplied from Mardin, Diyarbakır and Batman were determined. In addition, the effects of different roasting temperatures (140, 160 and 180°C) during 60 min on the oxidative stability of watermelon oil were investigated in watermelon seeds obtained from Batman. It was determined that the content of dry matter, ash, oil, protein, total tocopherol and total phenolics of watermelon seeds varied between 95.39 and 95.58%, 3.10 and 3.38%, 51.65 and 52.75%, 32.76 and 34.87%, 360.12 and 393.16 mg/kg, 427.75 and 478.80 mg GAeq./kg oil-free, respectively. The fatty acid composition of watermelon seeds showed that it is an important source of linoleic acid (60.74%) which is an essential fatty acid and also contained a high amount of oleic acid (20.48%). It was concluded that the roasting process did not affect the fatty acid composition of watermelon seeds, and the peroxide values slightly varied between 1.57-3.0 meq O2/kg oil. On the contrary, the effect of roasting temperature on the peroxide values of the samples was found statistically significant. While the values of K232 ranged from 2.54 to 4.01 during roasting, K268 values of the samples roasted changed from 4.99 to 5.04. K232 and K268 values of sample roasted at 180°C were statistically different from those roasted at 140°C and 160°C. As a result of the study, it was determined that watermelon seeds contained significant amounts of linoleic acid, the essential fatty acid, and that the roasting process to in the oil oxidation parameters.

___

  • Acar R, Özcan MM, Kanbur G, Dursun N. 2012. Some physico- chemical properties of edible and forage watermelon seeds. Iran Journal of Chemistry and Chemical Engineering, 31(4): 41-47.
  • Adhvaryu A, Erhan S, Liu Z, Perez J. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochimica Acta, 364:87-97.
  • Anhwange BA, Ikyenge BA, Nyiatagher DT, Ageh JT, 2010. Chemical analysis of Citrullus lanatus, Cucumcropsis mannii and Telfairia occidentalis seed oils. Journal of Applied Sciences Research, 6(3): 265-268.
  • IUPAC, 1991. International Union of Pure and Applied Chemistry Method No 2.301. In: Standard methods for analysis of oils, fats and derivatives (7 th edn.), Blackwell Scientific, Oxford.
  • Anonim, 2015. Yaş meyve ve sebze sektör raporu. TMMOB.
  • AOAC, 2000. Official Methods of Analysis (17 th edition). Association of Official Analytical Chemists, Washington, DC.
  • AOCS, 1989. Peroxide Value (Method No: Cd 8-53). Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press, Champaign.
  • AOCS, 1993. Determation of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC (Method No: Ce 8-89). Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press, Champaign.
  • AOCS, 1997. Determination of Specific Extinction of Oils and Fats, Ultraviolet Absorption (Method No: Ch 5-91). Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press, Champaign.
  • Baboli ZM, Kordi AAS, 2010. Characteristics and composition of watermelon seed oil and solvent extraction parameters effects. Journal of the American Oil Chemists’ Society, 87: 667–671.
  • Cammerer, B, Kroh, LW, 2009. Shelf life of linseeds and peanuts in relation to roasting. LWT Food Science and Technology, 42: 545-549.
  • de Conto LC, Gragnani MAL, Maus D, Ambiel HCI, Chiu MC, Grimaldi R, Gonçalves LAG, 2011. Characterization of crude watermelon seed oil by two different extractions methods. Journal of the American Oil Chemists’ Society, 88: 1709– 1714.
  • Dias RCS, Rezende GM, 2010. Watermelon system production. EMBRAPA, ISSN 1807-0027.
  • Franklin LM, Chapman DM, King ES, Mau M, Huang G, Mitchell AE. Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing Accelerated Shelf Life. Journal of Agricultural and Food Chemistry, 65: 2549-2563.
  • Garipoğlu H, 2006. Bazı Baharat ve Kuruyemişlerin Aflatoksin İçeriğinin Belirlenmesi Üzerine Bir Araştırma. Trakya Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. 57 sayfa.
  • Gökseven A. 2013. Çerezlik potansiyeli olan karpuz gen kaynaklarının verimliliği ile meyve tohum kalitesi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. 70 sayfa.
  • Guillen MAD, Cabo N. 2002. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry, 77: 503- 510.
  • Im MH, Choi JD, Choi KS. 1995. The oxidation stability and flavor acceptability of oil from roasted soybean. Agricultural Chemistry and Biotechnology, 38: 425–430.
  • Jannata B, Oveisib MR, Sadeghib N, Hajimahmoodib M, Behzadb M, Nahavandib B, Tehranib S, Sadeghic F, Oveisic M. 2013. Effect of Roasting Process on Total Phenolic Compounds and γ-tocopherol Contents of Iranian Sesame Seeds (Sesamum indicum). Iranian Journal of Pharmaceutical Research, 12 (4): 751-758.
  • Jung MY, Bock JY, Back S0, Lee TK, Kim JH. 1997. Pyrazine contents and oxidative stabilities of roasted soybean oils. Food Chemistry, 60:95-102.
  • Njuguna DE, Wanyoko JK, Kinyanjui T, Wachira FN, 2014. Fatty acid residues composition in the de-oiled tea seed oil cakes. Science Journal of Biotechnology, 263: 1-3.
  • Pyo YH, Lee TC, Logendra L, Rosen RT, 2004. Antioxidantactivity and phenolic compounds of swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry, 85: 19-26.
  • Raziq S, Anwar F, Mahmood Z, Shahid SA, Nadeem R, 2012. Characterization of seed oils from different varieties of watermelon [Citrullus lanatus (Thunb.)] from Pakistan. Grases Y Aceites, 63: 365-372.
  • Singleton VL, Rossi JA, 1965. Colorimetry of Total Phenolic with Phosphomolybdic -Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16: 144–158.
  • Vieira TMFS, Regitano-D’arce MAB, 1998. Stability of oils heated by microwave: UV-Spectrophotometric Evaluation. Ciencia e Tecnologia de Alimentos, 18: 1-9.
  • Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US, 2011. Characterization and functional properties of watermelon (Citrullus lanatus) seed proteins. Jornal of the Science of Food and Agriculture, 91: 113-121.
  • Wehner TC, 2008. Watermelon. Handbook of Plant Breeding; Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Springer Science and Business LLC, New York, USA.
  • Yoshida H, Tomiyama Y, Hirakawa Y, Mizushina Y, 2006. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. Journal of Food Composition and Analysis, 19: 330–339.
  • Ziyada AK, Elhussien SA, 2008. Physical and chemical characteristics of Citrullus lanatus Var. Colocynthoide seed oil. Journal of Physical Science, 19: 69-75.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)