Investigation of the Structural Deformation Behaviour of the Subsoiler and Paraplow Tines by Means of Finitie Element Method

Bu çalışmada, üç boyutlu bir CAD ortamında tasarımı gerçekleştirilmiş dipkazan ve şekilsiz pulluk ayaklarının, FEM temelli bir simülasyon aracılığıyla statik gerilmedeformasyon analizleri (özellikle mekaniksel dayanımlar açısından) karşılaştırmalı olarak verilmeye çalışılmıştır. Genel olarak, yüksek enerji gereksinimi olan her iki toprak işleme aleti de tarımsal üretim yapılan topraklardaki sıkışma probleminin ortadan kaldırılması amacıyla kullanılmaktadır. Toprak işleme aletlerinin çalışma koşulları, FEM tabanlı bir simülasyon programı (Ansys-16) kullanılarak oluşturulmuştur. Elde edilen statik analiz sonuçları, her iki aletin ayak tasarımında kullanılan bazı farklı malzemeler üzerinden değerlendirilmiş ve sonuçlar karşılaştırmalı olarak verilmeye çalışılmıştır. Analiz sonuçlarına göre; maksimum eşdeğer gerilme 122 MPa ile C-60 malzemeden tasarlanmış paraplow ayağında ve maksimum düşey yerdeğiştirme ise 0.00014 mm ile dipkazan ayağında gerçekleşmiştir.

Dipkazan ve Şekilsiz Pulluk (Paraplow) Ayaklarının Yapısal Deformasyon Davranışının Sonlu Elemanlar Yöntemi İle İncelenmesi

In this study, static stress-deformation analyzes (in terms of material strengths) were presented comparatively through a FEM-based simulation of the subsoiler and paraplow legs designed in a three-dimensional CAD environment. In general, both soil tillage implements with high energy requirements are being used to remove the soil compaction problem on agricultural land. The operating conditions of the implements were simulated using a FEM-based simulation program (Ansys-16). The results of static analysis obtained from the Finite Element Method (FEM) were evaluated on some different materials used in the shank design of both implements and the results were given comparatively. According to the analysis results, the maximum equivalent stress was in paraplow shank foot 122 MPa which is used C-60 material and the maximum vertical displacement is 0,00014 mm in the position of shank foot of subsoiler

___

  • Ahamadi I. 2016. Effect of soil, machine, and working state parameters on the required draft force of a subsoiler using a theoretical draft-calculating model. Soil Research 55(4) 389- 400.
  • Armin A, Fotouhi R, Szyszkowski W. 2014. On the FE modeling of soil–blade interaction in tillage operations. Finite Elements in Analysis and Design 92: 1–11.
  • Canillas EC, Salokhe VM. 2002. Modeling compaction in agricultural soils. Journal of Terramechanics 39: 71–84.
  • Çelik A, Raper RL. 2012. Design and evaluation of grounddriven rotary subsoilers. Soil and Tillage Research 124: 203–210.
  • Çelik A, Raper RL. 2016. Comparison of various coulter-type ground-driven rotary subsoilers in terms of energy consumption and soil disruption. Soil Use and Management. 32: 250–259.
  • Ghosh PK, Mohanty M, Bandyopadhyay KK, Painuli DK, Misra AK. 2006. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India I. Effect of subsoiling. Field Crops Research 96:80–89
  • Hassan FU, Ahmad M, Ahmad N, Abbasi MK. 2007. Effects of subsoil compaction on yield and yield attributes of wheat in the sub-humid region of Pakistan. Soil & Tillage Research 96: 361–366.
  • Ma Z, Yuan Y, Liu J, Yi Jinggang. 2016. Optimization design of subsoiling components. 2nd International conference on advances in mechanical engineering and industrial informatics (AMEII 2016). 399-402.
  • Nevens F, Reheul D. 2003. The consequences of wheel-induced soil compaction and subsoiling for silage maize on a sandy loam soil in Belgium. Soil & Tillage Research 70: 175–184 Pınar Y, Selvi KÇ, Yılmaz S. 2008. Effect of soil compaction (plough pan) on soybean yield at Samsun conditions. Journal of Agricultural Machinery Science. 4(2): 165-170.
  • Raper RL. 2005. Force requirements and soil disruption of straight and bentleg subsoilers for conservation tillage systems. Appl. Eng. Agric. 21(5):787-794
  • Raper RL. 2007. In-Row subsoiler that reduce soil compaction and residue disturbance. Applied Engineering in Agriculture. 23:253-258.
  • Smith LA, Williford JR. 1988. Power requirements of conventional, triplex, and parabolic subsoilers. Transaction of the American Society of the Agricultural Engineers, 31: 1685– 1688.
  • Topakcı M, Çelik HK, Çanakcı M, Karayel D, Rennie A. 2010. Structural optimization of a subsoiler. Pakistan Journal of Scientific and Industrial Research. 53(5): 281-287.
  • Spoor G, Tijink FGJ, Weisskopf P. 2003. Subsoil compaction: risk, avoidance, identification and alleviation. Soil & Tillage Research 73: 175–182.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)