Gıdalarda Uçucu Bileşen Analizinde Katı Faz Mikroekstraksiyon Koşullarının Optimizasyonunda Yanıt Yüzey Yönteminin Kullanılması

Gıdalarda uçucu bileşen analizinde örnek hazırlama amacıyla yüksek vakumlu buhar destilasyonu, eş zamanlı destilasyon ekstraksiyon, buhar destilasyonu, tuzak ile tutma gibi yöntemler kullanılmaktadır. Bu yöntemlerin uygulanışının zor ve maliyeti yüksek olması nedeniyle söz konusu yöntemler yerini katı faz mikroekstraksiyon tekniğine bırakmıştır. Katı faz mikroekstraksiyon ile uçucu bileşen analizlerinde ekstraksiyonun etkinliğinin artırılması için ekstraksiyon sıcaklığı, ekstraksiyon süresi, örnek hacmi, fiber tipi gibi ekstraksiyon koşullarının optimize edilmesi gerekmektedir. Gıdaların uçucu bileşen analizinde ekstraksiyon koşullarının optimizasyonu amacıyla deneme sayını azaltan ve bağımsız değişkenlerin interaksiyon etkisini inceleyen yanıt yüzey yönteminden faydalanan çalışmalar gerçekleştirilmiştir. Bu derlemede gıdalarda katı faz mikroekstraksiyon tekniği kullanılarak yapılan uçucu bileşen analizi optimizasyonunda yanıt yüzey yöntemini kullanan güncel çalışmalar ile ilgili bilgi verilmesi amaçlanmıştır.

Optimization of Solid Phase Microextraction Conditions for Volatile Components of Foods by Using Response Surface Methodology

High vacuum steam distillation, simultaneous distillation extraction, steam distillation, purge and trap methods are used for sample preparation in volatile component analysis. Since these methods are difficult and costly to implement, these methods have left their place to the solid phase microextraction technique. Extraction conditions such as extraction temperature, extraction time, sample volume and fiber type should be optimized in order to increase the efficiency of extraction in volatile component analysis with solid phase microextraction in foods. In the optimization of extraction conditions in volatile component analysis of foods, studies have been carried out to utilize the response surface method, which reduces the number of experiments and also examines the interaction effect of the independent variables. In this review, it is aimed to give information about current studies using response surface methodology in optimization of volatile compound analysis of foods using solid phase microextraction technique.

___

  • Alexandrou N, Lawrence MJ, Pawliszyn J. 1992. Cleanup of complex organic mixtures using supercritical fluids and selective adsorbents. Anal. Chem., 64: 301–311.
  • Alver E, Demirci A, Özcimder M. 2012. Microextraction methods. Sigma Journal of Engineering and Natural Sciences, 30: 75-90.
  • Anonim, 1999. Solid phase microextraction: Theory and optimization of conditions. Bulletin 923A. Supelco, Bellefonte, Pa.
  • Anonim, 2017. Selection Guide for Supelco SPME Fibers. Erişim adresi: http://www.sigmaaldrich.com/technicaldocuments/articles/analytical/selecting-spme-fibers.html [Erişim tarihi: 02.03.2017].
  • Arcanjo NMD, Bezerra TKA, da Sİlva FLH, Madruga MS. 2015. Optimization of the HS-SPME-GC/MS technique for determining volatile compounds in red wines made from Isabel grapes (Vitis labrusca). Food Sci.Technol., 35(4): 676-682.
  • Arthur CL, Pawliszyn J. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal.Chem., 62: 2145–2148.
  • Ayhan Z, Döş A. 2004. Gıdalarda katı faz mikroekstraksiyon tekniği ile flavor analizi. Gıda, 29(2): 169-175.
  • Balasubramanian S, Panigrahi S. 2011. Solid-phase microextraction (SPME) techniques for quality characterization of food products: a review. Food Bioprocess Tech., 4: 1–26.
  • Barros EP, Moreira N, Pereira GE, Leite SGF, Rezende CM, de Pinho, PG. 2012. Development and validation of automatic HS-SPME with a gas chromatographyiontrap/massspectrometry method for analysis of volatiles in wines. Talanta, 101: 177-186.
  • Bezerra TKA, Araújo ARR, Arcanjo NMD, da Sİlva FLH, Queiroga RDRD, Madruga MS. 2016. Optimization of the HS-SPME-GC/MS technique for the analysis of volatile compounds in caprine Coalho cheese using response surface methodology. Food Sci. Technol., 36(1): 103-110.
  • Box GEP, Draper NR. 2007. Empirical Model Building and Response Surfaces, 2nd ed. John Wiley and Sons, New York. 0471810339.
  • Burin VM, Marchand S, de Revel G, Bordignon-Luiz, MT. 2013. Development and validation of method for heterocyclic compounds in wine:Optimization of HS-SPME conditions applying a response surface methodology. Talanta, 117: 87–93.
  • Charry-Parra G, DeJesus-Echevarria M, Perez FJ. 2011. Beer volatile analysis: optimization of HS/SPME coupled to GC/MS/FID. J. Food Sci., 76(2): C205-C211.
  • D’Agostino MF., Sanz, J., Sanz, M.L., Giuffrè, A.M., Sicari, V., Soria, A.C., 2015. Optimization of a solid-phase microextraction method for the gas chromatography–mass spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles. Food Chem., 178:10–17.
  • Dı´az P, Iba´n˜ez E, Reglero, G, Sen˜ora´ns, FJ. 2009. Optimization of summer truffle aroma analysis by SPME: Comparison of extraction with different polarity fibres. LWT - Food Sci. Technol., 42: 1253–1259.
  • Eren İ. 2011. Yağlarda membran teknolojisiyle Degumming ve asitlik giderme İşlemlerinin optimizasyonu. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, İzmir, Türkiye.
  • Frazey PA, Barkley RM, Sievers RE. 1998. Solid-phase microextraction with temperature programmed desorption for the analysis of iodination disinfection byproducts. Anal. Chem., 70: 638–644.
  • Ho CW, Wan Aida WM, Maskat MY, Osman H. 2006. Optimization of headspace solid phase microextraction (HSSPME) for gas chromatography mass spectrometry (GC– MS) analysis of aroma compound in palm sugar (Arenga pinnata). J. Food Compost. Anal., 19:822–830.
  • Junior SB, de Melo, ADT, Zini CA, Godoy HT. 2011. Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. J. Chromatogr. A,, 1218: 3345–3350.
  • Junting L, Peng C, Suzuki O. 1998. Solid-phase microextraction (SPME) of drugs and poisons from biological samples. Forensic Sci. Int., 97: 93-100.
  • Kataoka H, Lord HL, Pawliszyn J. 2000. Applications of solidphase microextraction in food analysis. J. Chromatogr A, 880: 35-62.
  • King AJ, Readman JW, Zhou JL. 2003. The application of solidphase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs). Environ. Geochem. Health, 25: 69–75.
  • Koç B, Kaymak-Ertekin F. 2010. Yanıt yüzey yöntemi ve gıda işleme uygulamaları. Gıda, 35(1): 63-70.
  • Leça JM, Pereira AC, Vieira AC, Reis MS, Marques JC. 2015. Optimal design of experiments applied to headspace solid phase microextraction for the quantification of vicinal diketones in beer through gas chromatography-mass spectrometric detection. Anal. Chim. Acta, 887: 101-110.
  • Lochow E, Peschmann P, Hellwig C. 2005. Determination of beer fermentation by-products via gas chromatography. Brauwelt International, 23: 270–1.
  • Ma QL, Hamid N, Bekhit AED, Robertson J, Law TF. 2013. Optimization of headspace solid phase microextraction (HSSPME) for gas chromatography mass spectrometry (GC– MS) analysis of aroma compounds in cooked beef using response surface methodology. Microchem. J., 111: 16–24.
  • Mesquita PRR, Nunes EC, dos Santos FN, Bastos LP, Costa MAPC, Rodrigues FD, de Andrade JB. 2017. Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchem. J., 130: 79–87.
  • Mester Z, Sturgeon R. 2005. Trace element speciation using solid phase microextraction. Spectrochim. Acta Part B, 60: 1243–1269.
  • Mestres M, Marti MP, Busto O, Guasch J. 2000. Analysis of low-volatility organic sulphur compounds in wines by solidphase microextraction and gas chromatography. J. Chromatogr. A, 881: 583–590.
  • Mondello L, Costa R, Tranchida PQ, Chiofalo B, Zumbo A, Dugo P, Dugo G. 2005. Determination of flavor components in Sicilian goat cheese by automated HS-SPME-GC. Flavour Fragr. J., 20: 659–665.
  • Moreira N, Meireles S, Brandão T, de Pinho PG. 2013. Optimization of the HS-SPME–GC–IT/MS method using a central composite design for volatile carbonyl compounds determination in beers. Talanta, 117: 523–531.
  • Myers RH, Montgomery DC. 1995. Response Surface Methodology, Process and Product Optimization Using Designed Experiments 3rd ed., John Wiley and Sons. New York. 978-1-119-06860-0
  • Olariu RI, Vione D, Grinberg N, Arsene C. 2010. Sample preparation for trace analysis by chromatographic methods. J. Liq. Chromatogr. Relat. Technol., 33: 1174–1207.
  • Pala ÇU, Yüceer YK. 2006. Katı faz mikroekstraksiyon (spme) tekniğinin aroma maddelerinin analizinde kullanımı. Erişim adresi: Dünya Gıda. http://www.dunyagida.com.tr/ haber/kati-faz-mikroekstraksiyon-spme-tekniginin-aromamaddelerinin/1892 [Erişim tarihi: 30.04.2017]
  • Pawliszyn J. 1995. New directions in sample preparation for analysis of organic compounds. Trends Analyt. Chem., 14:113-122.
  • Pawliszyn J. 2000. Theory of solid-phase microextraction. J. Chromatogr. Sci., 38: 270-278.
  • Pawliszyn J. 2012. Handbook of Solid Phase Microextraction 1st ed., Elsevier Inc. USA. 978-0-12-416017-0.
  • Pellati F, Benvenuti S, Yoshizaki F, Bertelli D, Rossi MC. 2005. Headspace solid-phase microextraction-gas chromatography–mass spectrometry analysis of the volatile compounds of Evodia species fruits. J. Chromatogr. A. 1087: 265–273.
  • Picó Y, Fernández M, Ruiz MJ, Font G. 2007. Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. J. Biochem. Biophys. Methods, 70: 117–131.
  • Pinho O, Ferreira I, Santos L. 2006. Method optimization by solid-phase micro-extraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. J. Chromatogr A, 1121: 145–153.
  • Prosen H, Zupancic-Karlj L. 1999. Solid-phase microextraction. Trends Analyt. Chem., 18(4): 272-282
  • Ribeiro JS, Teófilo RF, Augusto F, Ferreira MMC. 2010. Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis. Chemometr. Intell. Lab. Syst., 102: 45– 52.
  • Rodrigues F, Caldeira M, Camara JS. 2008. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Anal. Chim. Acta, 609: 82–104.
  • Rodriguez-Bencomo JJ, Muñoz-González C, Martín-Álvarez PJ, Lázaro E, Mancebo R, Castañé X, Pozo-Bayón MA. 2012. Optimization of a HS-SPME-GC-MS procedure for beer volatile profiling using response surface methodology: application to follow aroma stability of beers under different storage conditions. Food Anal. Methods, 5: 1386–1397.
  • Sadoughi N, Schmidtke LM, Antalick G, Blackman JW, Steel, CC. 2015. Gas chromatography−mass spectrometry method optimized using response surface modeling for the quantitation of fungal off-flavors in grapes and wine. J. Agric. Food Chem., 63: 2877−2885.
  • Salum P, Erbay Z, Kelebek H, Selli S. 2017. Optimization of Headspace Solid-Phase Microextraction with Different Fibers for the Analysis of Volatile Compounds of WhiteBrined Cheese by Using Response Surface Methodology. Food Anal. Methods, 10: 1956-1964.
  • Wagner R, Franco MRB. 2012. Effect of the variables time and temperature on volatile compounds extraction of salami by solid phase microextraction. Food Anal. Methods, 5: 1186– 1195.
  • Zacaroni LM, de Sales PF, Cardoso MG, Santiago WD, Nelson DL. 2017. Response surface optimization of SPME extraction conditions for the analysis of volatile compounds in Brazilian sugar cane spirits by HS-SPME-GC–MS. J. Inst. Brew., 123: 226–231.
  • Zhang Y, Gao B, Zhang M, Shi J, Xu Y. 2009. Headspace solidphase microextractiongas chromatography–mass spectrometry analysis of the volatile components of longan (Dimocarpus longan Lour.). Eur. Food Res. Technol., 229: 457–465.
  • Zhang Z, Pawliszyn J. 1993. Headspace solid phase microextraction. Anal. Chem., 65:1853-1860.
  • Zhang Z, Yang MJ, Pawliszyn J. 1994. Solid phase microextraction. Anal. Chem., 66(17): 844-852.
  • Zhu JY, Chai XS. 2005. Some recent developments in headspace gas chromatography. Curr. Anal. Chem., 1: 79– 83.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Farklı Sulama Düzeyi ve Biyoaktivatör Uygulamalarının ‘Rubygem’ Çilek Çeşidinde Meyve Kalite Özellikleri Üzerine Etkileri

MEHMET ALİ SARIDAŞ, BURÇAK KAPUR, ESER ÇELİKTOPUZ, SEVGİ PAYDAŞ KARGI

Characterization and Antimicrobial-Resistance Profile of Escherichia coli O157 and O157: H7 Isolated from Modified Atmosphere Packaged Meat Samples

ÖZGÜR ÇADIRCI, ALİ GÜCÜKOĞLU, GÖKNUR TERZİ GÜLEL, TOLGA UYANIK, Abdulaziz ABDULAHİ, MUSTAFA ALİŞARLI

Gıdalarda Uçucu Bileşen Analizinde Katı Faz Mikroekstraksiyon Koşullarının Optimizasyonunda Yanıt Yüzey Yönteminin Kullanılması

CEYDA DADALI, YEŞİM ELMACI

Etlik Piliçlerin Kesim Öncesi Bilinçsizleştirilmesinde Kullanılan Farklı Akım ve Dalga Tipindeki Elektrik Değerlerinin Karkas Kusurları ve Göğüs Eti Kalite Özellikleri Üzerine Etkisi

İHSAN BÜLENT HELVA, MUSTAFA AKŞİT

Tarım Alanlarından İzole Edilen Mikrofungusların Benomil Duyarlılıklarının Belirlenmesi

FATİH KALYONCU, Azize ÖZER

Kadife (Tagetes erecta) Bitkisinde Gün Uzunluğunun Büyüme ve Çiçeklenme Üzerine Etkisi

NEZİHE KÖKSAL, SARA YASEMİN, Aslıhan ÖZKAYA

Terminal Melezlemede Baba Hat Olarak Kullanılan Charollais ile Romanov X Akkaraman(F1) ve Romanov X Morkaraman(F1) Melezleri Kuzularında Doğum Mevsiminin Vücut Özellikleri Üzerine Etkileri

FATİH AHMET ASLAN, EBRU EMSEN GİMENEZ DİAZ

Probiyotik Mayalar ve Özellikleri

Hatice YILDIRAN, GÜLDEN BAŞYİĞİT KILIÇ, AYNUR GÜL KARAHAN

Status of Striped Hyaena (Hyaena hyaena) in Hatay and Şanlıurfa-Turkey

EROL ATAY, Ahmet KASAPOĞLU, İsmail Turan ÇETİN

Asma ve Narlardan İzole Edilen Grapevine leafroll-associated virus-1 İzolatlarının Kısmi Sekanslarının Karşılaştırmalı Genomik Analizleri

EMİNUR ELÇİ, MONA GAZEL, KADRİYE ÇAĞLAYAN