CRISPR/Cas9 Teknolojisi ve Bitkilerde CRSPR/Cas9 Uygulamaları

Dünya genelinde besleyici gıdalara erişimi arttırmak için yenilikçi teknolojilerin geliştirilmesine vetarımsal üretim sistemlerine entegre edilmesine ihtiyaç duyulmaktadır. Geliştirilen bitki ıslahıteknikleri, bitki genomunda modifikasyonların oluşturulması için birçok avantaj sunmaktadır. Genomdüzenleme teknolojilerinden CRSPR/Cas9, tarımsal ürünlerde hedef odaklı mutasyonların oluşumunaolanak tanıyarak, ıslah programları ile elde edilmek istenen arzu edilen yeni karakterlerin, yabancıgenetik element kullanılmadan mutasyonuna olanak tanıyan büyük bir potansiyele sahip etkili birsistemdir. Bu derlemede CRSPR/Cas9 teknolojisinin keşfi ve evrimi, fonksiyonelliği, bitkilerdeyapılan genom düzenleme çalışmaları ve tekniğin bitki ıslahı için sahip olduğu güçlü potansiyellerive genom düzenleme teknolojilerinin bitki ıslahına kazandıracağı avantajlar genel bir perspektiflesunulmuştur.

CRISPR/Cas9 Technology and Applications in Plants

In order to increase access to nutritious foods around the world, innovative technologies need to be developed and integrated into agricultural production systems. The new plant breeding techniques developed offer many advantages for making modifications in the plant genome. CRSPR/Cas9, one of the genome editing technologies, is an efficient system with high potential that allows the formation of target-oriented mutations in many agricultural products and allows the mutation of new and desired characters to be obtained through breeding programs without the use of foreign genetic elements. In this review, we have summarize the discovery, evalution, functionality, genome editing studies of plants and the strong potentials of CRSPR/Cas9 technology for plant breeding.

___

  • Barrangou R. 2013. CRISPR‐Cas systems and RNA guided interference. Wiley Interdiscip, Reviews: RNA, 4(3): 267-278.
  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:(1) 1–10.
  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N.J, Nekrasov V. 2015. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnology., Food Biotechnology Plant Biotechnology, 32: 76–84.
  • Bolotin A, Quinquis B, Sorokin A, Ehrlich S.D. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8): 2551–2561
  • Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1): 41–52.
  • Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, Van der Oost J. 2008. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 321(5891): 960–964.
  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han, T, Hou W. 2015. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots. PLOS ONE, 10(8): e0136064.
  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal‐On A. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Moleculer Plant Pathology, 17(7): 1140–1153.
  • Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. 2019. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Frontiers Plant Science, 10:40, 1-12
  • Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 70: 667–697.
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiyang W, Marraffini L.A, Zhang F.2013. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121): 819–823.
  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340): 602–607.
  • Demirci Y, Zhang B, Unver T. 2018. CRISPR/Cas9: An RNA- guided highly precise synthetic tool for plant genome editing. J. Cell. Physiology, 233(3): 1844–1859.
  • Dönmez D, Şimşek Ö, Aka Kaçar Y. 2015. Yeni nesil DNA dizileme teknolojileri ve bitkilerde kullanımı. Türk Bilimsel Derlemeler Dergisi, 8(1): 30–37.
  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. 2015. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. Scientific Reports 5: 12217.
  • Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8(1): 172.
  • Hsu PD, Lander ES, Zhang F. 2014. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 157(6):1262–1278.
  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriology, 169(12): 5429–5433.
  • Jansen R, Embden JDA, Van Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiology, 43(6): 1565–1575.
  • Jia H, Orbovic V, Jones JB, Wang N. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnology Journal, 14(5): 1291–1301.
  • Jia H, Wang N. 2014a. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Repoerts, 33(12): 1993–2001.
  • Jia H, Wang N. 2014b. Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLOS ONE, 9(4): e93806.
  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard, L, Patron N, Uauy C, Harwood W. 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 16(1): 1–13.
  • Kaur N, Alok A, Shivani Kaur N, Pandey P, Awasthi P, Tiwari S. 2018. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics, 18(1): 89–99.
  • Li J.-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8): 688-691
  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L. 2019. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biology, 19(1): 1-13.
  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Yan Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Yuanling Guo J, Chen L, Zhao X, Dong Z, Liu Y.-G. 2015. A Robust CRISPR/Cas9 System for Convenient, High- Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Moleculer Plant, 8(8): 1274–1284.
  • Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 463(7280): 568–571.
  • Martín-Pizarro C, Triviño JC, Posé D. 2019. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. Journal of Experimental Botany., 70(3): 885–895.
  • Mojica FJM, Ferrer C, Juez G, Rodríguez‐Valera F. 1995. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Moleculer Microbiology, 17(1): 85–93
  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. 2016. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6(1): 1-8..
  • Nomura T, Sakurai T, Osakabe Y, Osakabe K, Sakakibara H. 2016. Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System. Plant Cell Physiology, 57(12): 2600–2610
  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M.-H, Koo O.-J, Viola R, Kanchiswamy C.N. 2018. CRISPR–Cas9- mediated genome editing in apple and grapevine. Nature Protocol, 13(12): 2844–2863
  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G. 2016. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6: 24765
  • Pauli C, Liu Y, Zhou F, Gerloff D, Rohde C, Mueller-Tidow C. 2016. A focused CRSPR/CAS9 screen identifies snoRNAs that are required for clonal growth of leukemia cells.In Oncology Research And Treatment, 39: 143–143
  • Pompili V, Cost LD, Piazza S, Pindo M, Malnoy M. 2019. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnology Journal, 18(3): 845-858.
  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6: 32289
  • Shorinola O, Kaye R, Golan G, Peleg Z, Kepinski S, Uauy C. 2019. Genetic Screening for Mutants with Altered Seminal Root Numbers in Hexaploid Wheat Using a High-Throughput Root Phenotyping Platform. G3: Genes Genomes Genetics, 9(9): 2799–2809
  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA. Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. 2009. Precise genome modification in the crop species Zea mays using
  • Wang M, Wang G, Ji J, Wang J. 2009. The effect of pds gene silencing on chloroplast igment composition, thylakoid membrane structure and photosynthesis efficiency in tobacco plants. Plant Science, 177(3): 222–226.
  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J.-L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9): 947–951
  • Wang Y, Zong Y, Gao C. 2017. Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems. In Wheat Biotechnology, 169–185 Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14(1): 327
  • Xu R.-F, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB. 2015. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports, 5: 11491
  • Xu ZS, Feng K, Xiong AS. 2019. CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants. Mol. Biotechnology, 61(3): 191–199
  • Yin Y, Hao H, Xu X, Shen L, Wu W, Zhang J, Li Q. 2019. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Lipids Health Dis., 18(1): 1-8
  • Zhang B, Li C, Unver T. 2017. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Scientific Reports, 7: 43902
  • Zhang Hui Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang Heng Xu N, Zhu J.-K. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6): 797–807
  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communication, 7(1): 1–8
  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li W-X, Mao L, Chen B, Xu Y, Li X, Xie C. 2016. An alternative strategy for targeted gene replacement in plants using a dual- sgRNA/Cas9 design. Scientific Reports, 6: 1-11
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

CRISPR/Cas9 Teknolojisi ve Bitkilerde CRSPR/Cas9 Uygulamaları

Yıldız AKA KAÇAR, Emine AÇAR

Production Efficiencies of the Nigerian Agricultural Insurance Corporation (NAIC) Insured and Non-NAIC Insured Livestock Farmers in Kwara State, Nigeria

Ojetunde Babatunde STEPHEN, Odum Egbodo Boheje EMMANUEL, Adewumi Olaniyi MATTHEW

Future and Prospect use of Pyrethrum (Chrysanthemum cinerariifolium) as Part of the Integrated Pest and Disease Management (IPDM) Tool in Turkey

Flavien SHİMİRA, Senem UĞUR, Şamil Muhammet ÖZDEMİR, Yeşim Yalçın MENDİ

Mathematical Modelling and Performance Analysis of Flat Plate Solar Dryer- CFD Simulation Approach

Debela Geneti DESISA

Yavaş Gelişen Hubbard Red JA57 Genotipinin Farklı Yetiştirme Sistemlerinde Büyüme Performansları ve Karkas Özellikleri

Ökkeş AKYAR, Beyhan YETER

Tarımsal Yapılarda Kullanılacak Endüstriyel Atık Katkılı Kendiliğinden Yerleşen Betonların Performans Özellikleri ve Maliyet Optimizasyonu

Selçuk MEMİŞ

Circular Economy and its Prospects in Nepalese Agriculture

Santosh Kumar BHATTARAI, Suman BHATTARAI, Chandan KC, Arun GC

Outbreak investigation of lumpy skin disease in dairy farms at Barishal, Bangladesh

Md. Ibrahim KHALIL, Mohammad Ferdous Rahman SARKER, F. M. Yasir HASIB, Sharmin CHOWDHURY

Microscopic Features of Gonadally Inactive Testis of Khaki Campbell Duck (Anas platyrhynchos domesticus) in Bangladesh

Papia KTAHUN, Ziaul HAQUE, Shonkor Kumar DAS

The Propagation of Endemic Astragalus vulnerariae DC. by Cutting and Possibility of Use in Landscape in Turkey

Fatma Betül ERBİL, COŞKUN SAĞLAM