Assessment of Pedotransfer Functions for Saturated Hydraulic Conductivity of Anatolian Soils

Hydraulic conductivity is an essential base for applied research in soil and water management, landscape, and environmental disciplines. Saturated hydraulic conductivity (Ksat) is one of the most important soil physical properties, which is considered in the planning of irrigation and drainage and predicting other soil hydrological processes. However, it has been frequently reported that measurement of Ksat is laborious, time-consuming, and expensive due to its high spatial variability and this has motivated researchers to develop indirect methods such as pedotransfer functions (PTFs) for developing Ksat-database in regional and national scales. In this study, eight Ksat studies with the PTFs in Anatolian soils were reviewed. PTFs were evaluated regarding their type, predictors used, and their performance. The majority of studied PTFs were developed on alluvial, colluvial, and alkaline soils in semi-arid and semi-humid climates. Multiple linear regression (MLR) and artificial neural networks (ANNs) have been common PTFs, and soil texture, bulk density, organic matter content, and pH have been common predictors used with these PTFs. Root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2 ) were the commonly used criteria in the verification and validation of the PTFs. Studies on the use of Ksat and PTFs are inadequate, and researches are still needed to be able to use it nationwide and can develop an adequate database. According to the results of PTF studies, the highest R2 and correlation coefficient (r) values belong to the Rosetta and MLR types of the PTFs, respectively. The lowest RMSE value was obtained with the equations in which the physical and chemical soil properties were used together as input data for PTFs. In addition, it has been noted that the soil morphological properties should be used as input data in PTFs studies, especially in Ksat estimation.

Anadolu Topraklarının Doymuş Hidrolik İletkenliği için Pedotransfer Fonksiyonlarının Değerlendirilmesi

Hidrolik iletkenlik, toprak ve su yönetimi, peyzaj ve çevre disiplinlerinde uygulamalı araştırmalar için temel bir temeldir. Doymuş hidrolik iletkenlik (Ksat), sulama ve drenajın planlanmasında ve diğer toprak hidrolojik süreçlerinin öngörülmesinde dikkate alınan en önemli toprak fiziksel özelliklerinden biridir. Bununla birlikte, Ksat ölçümünün yüksek mekansal değişkenliği nedeniyle zahmetli, zaman alıcı ve pahalı olduğu sıklıkla bildirilmiştir. Bu, araştırmacıları bölgesel ve ulusal ölçeklerde Ksat veri tabanı geliştirmek için pedotransfer fonksiyonları (PTF’ler) gibi dolaylı yöntemler geliştirmeye motive etmiştir. Bu çalışmada Anadolu topraklarında PTF kullanılarak yapılan sekiz Ksat çalışması gözden geçirilmiştir. PTF’ler türleri, kullanılan öngörücüleri ve performansları açısından değerlendirilmiştir. İncelenen PTF’lerin çoğu, yarı kurak ve yarı nemli iklimlerde alüvyal, kolüvyal ve alkali topraklarda geliştirilmiştir. Çoklu lineer regresyon (MLR) ve yapay sinir ağları (ANNs) yaygın PTF’lerdir ve toprak dokusu, kütle yoğunluğu, organik madde içeriği ve pH bu PTF’lerde yaygın olarak kullanılan tahmin edicilerdir. Kök ortalama kare hatası (RMSE), ortalama mutlak hata (MAE) ve determinasyon katsayısı (R2 ) PTF’lerin doğrulanmasında ve onaylanmasında yaygın olarak kullanılan ölçütlerdir. Ksat ve PTF’lerin kullanımı ile ilgili çalışmalar yetersizdir ve ülke çapında kullanabilmek ve yeterli bir veri tabanı geliştirebilmek için hala araştırmalara ihtiyaç vardır. PTF çalışmalarının sonuçlarına göre, en yüksek R2 ve korelasyon katsayısı (r) değerleri sırasıyla PTF’lerin Rosetta ve MLR tiplerine aittir. En düşük RMSE değeri, fiziksel ve kimyasal toprak özelliklerinin PTF’ler için girdi verileri olarak birlikte kullanıldığı denklemlerle elde edilmiştir. Ayrıca, toprak morfolojik özelliklerinin PTF çalışmalarında, özellikle Ksat tahmininde girdi verileri olarak kullanılması gerektiği kaydedilmiştir.

___

Amoozegar A. 1989. A compact, constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone, Soil Science Society of America Journal, 53: 1356- 1361. DOI: 10.2136/sssaj1989.03615995005300050009x.

Bouma J. 1989. Using Soil Survey Data for Quantitative Land Evaluation. Advances in Soil Science. 9: 177–213. DOI: 10.1007/978-1-4612-3532-3_4.

Candemir F, Gülser C. 2012. Influencing Factors and Prediction of Hydraulic Conductivity in Fine-Textured Alkaline Soils. Arid Land Research and Management. 26: 1,15-31. DOI: 10.1080/15324982.2011.631686.

Cemek B, Arslan H, Güler M, Küçüktopçu E. 2015. Estimation of Field capacity and permanent wilting point using artifical neural network. 2nd International Conference on Sustainable Agriculture and Environment, Konya, Turkey, 9/30-10/3, 2015. Selcuk University, pp.1002-1009, Record Number: 20163289254

Deb SK, Shukla MK. 2012. Variability of hydraulic conductivity due to multiple factors. American Journal of Environmental Science. 8 (5): 489–502. DOI: 10.3844/ajessp.2012.489.

Feresthte HF. 2014. Evaluation of artifical neural network and regression PTFs in estimating some soil hydraulic parameters. Proenvironment, 7:10-20.

Ghanbarian B, Taslimitehrani V, Pachepsky YA. 2016. ScaleDependent Pedotransfer Functions Reliability for Estimating Saturated Hydraulic Conductivity. Catena. 149: 374- 38010.015. DOI: 10.1016/j.catena.2016.10.015.

Gülser C, Candemir F. 2014. Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian Journal of Soil Science (EJSS)., 3(1), 77-81. DOI: 10.18393/ejss.69966.

Haghverdi A, Özztürk HS, Ghodsi S, Tunçay T. 2012. Estimating saturated hydraulic conductivity using different well-known pedotransfer functions. Instructions for Short Papers for the Agro Environ Conference, Wageningen; 2012.

Jabro JD. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Trans. ASAE 35 (2): 557- 560.

Karahan G, Erşahin S. 2016. Predicting saturated hydraulic conductivity using soil morphologica properties. Eurasian Journal of Soil Science (EJSS)., 5 (1) 30 – 38. DOI: 10.18393/ejss.2016.1.030-038.

Klute A, Dirksen C. 1986. Hydraulic conductivity of saturated soils. Klute, Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. SSSA Book Series no.9 (2nd Edition). Madison, Wisconsin, USA. 694-700. DOI: 10.2136/sssabookser5.1.2ed.c28 ISSN: 2156-3276

Merdun H, Çınar Ö, Meral R, Apan M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research. 90(1): 108-116. DOI: 10.1016/j.still.2005.08.011

Minasny B, McBratney AB. 2003. NeuroTheta, pedotransfer functions for predicting soil hydraulic properties for Australian soil. Australian Centre for Precision Agriculture, The University of Sydney. http://www.usyd.edu.au/su /agric/acpa.

Özdemir N. 1998. Toprak Fizigi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Yayınları, Ondokuz Mayıs University Faculty of Agriculture Publications, No:30. Samsun.

Öztekin T, Cemek B, Brown LC. 2007. Pedotransfer Functions for the Hydraulic Properties of Layered Soils. Gaziosman Paşa Üniversitesi Ziraat Fakültesi Dergisi. 24 (2): 77-86.

Pachepsky YA, Rawls WJ. 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal (SSSAJ)., 63: 1748– 1757. DOI: 10.2136/sssaj1999.6361748x.

Pachepsky YA, Rawls WJ. 2004. Development of Pedotransfer Functions in Soil Hydrology. (Pachepsky and Rawls). Developments in Soil Science. Amsterdam, Elsevier. Volume 30, ISBN: 0444517057, ISBN:0166-2481(Series).

Pachepsky Y and Hill RL. 2017. Scale and scaling in soils. Geoderma. 287, 4–30 DOI: 10.1016/j.geoderma.2016.08.017.

Puckett WE, Dane JH, Hajek BF. 1985. Physical and mineralogical data to determine soil hydraulic properties. Soil. Soil Science Society of America Journal, 49, 831-836.

Sarki A, Mirjat MS, Mahessar AA, Kori SM, Qureshi AL. 2014. Determination of saturated hydraulic conductivity of different soil texture materials. IV:56–62. IOSR J. Agric. Veterinary Sci. (IOSR-JAVS) 7 (12). DOI: 10.9790/2380-071245662.

Schaap MG, Leij FJ. 1998a. Database-related accuracy and uncertainty of pedotransfer functions. Soil Science. 163(10): 765-779.

Schaap MG, Leij FJ, Van Genuchten MTh. 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions’, Journal of Hydrology, 251: 163–176.

Yakupoğlu T, Şişman AÖ, Karagöktaş M, Demir ÖF. 2013. Toprakların Doygun Koşullardaki Hidrolik İletkenlik Değerlerinin Pedotransfer Eşitlikler İle Tahminlenmesi. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi. 8(1): 84-92. ISSN 1304-9984.

Tombul, M., Akyürek, Z., Sorman, A. Ü. 2004. Research Note: Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey. Hydrology and Earth System Sciences. European Geosciences Union, 8 (6): 1200- 1209.hal-00304995.

U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook, No. 64. U. S. Govt. Printing Office, Washington, D.C.

Van Looy K, Bouma J, Herbst M, Koestel J, Minasny B, Mishra U, Montzka C, Nemes A, Pachepsky YA, Padarian J, Schaap MG, Tóth B, Verhoef A, Vanderborght J, van der Ploeg MJ, Weihermüller L, Zacharias S, Zhang Y, Vereecken H. 2017. Pedotransfer functions in earth system science: challenges and perspectives. Reviews of. Geophys. 55: 1199–1256. DOI: 10.1002/2017RG000581.

Vereecken H, Weynants M, Javaux M, Pachepsky Y, Schaap MG, Genuchten MTV. 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone Journal (vzj)., 9: 795–820. DOI: https://doi:10.2136/vzj2010.0045.

Wösten JHM, Pachepsky YA, Rawls WJ. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251: 123–150. DOI: 10.1016/S0022- 1694(01)00464-4.

Zhang Z, Schaap MG. 2019. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. Journal of Hydrology. 575 (2019) 1011–1030. DOI: 10.1016/j.jhydrol.2019.05.058.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)