Aside Adapte ve Adapte Olmayan Durağan Faz Escherichia coli O157:H7, Salmonella enterica Typhimurium ve Listeria monocytogenes’in Nar Suyundaki Termal Direnci

Bu çalışmada, aside adapte olan ve adapte olmayan durağan faz Escherichia coli O157:H7, Salmonella enterica Typhimurium ve Listeria monocytogenes’in nar suyundaki termal dirençleri incelenmiştir. Ayrıca, jenerik E. coli’nin gösterge mikroorganizma olarak performansı değerlendirilmiştir. Aside adapte olmayan durağan faz hücreler şeker içermeyen tryptic soy broth’da (TSB-NG) 36±1°C’de 18±2 saat inkübe edilerek elde edilmiştir. Asit adaptasyonu için %1 glukoz içeren tryptic soy broth (10 g/l; TSBG) kullanılmıştır. L. monocytogenes için kullanılan besiyerleri %0,6 yeast ekstraktla desteklenlmiştir. Hücreler peptonlu su ile yıkandıktan sonra, 5 ml pastörize nar suyu pellet üzerine eklenerek 107 -109 log CFU/ml konsantrasyonunda inoküle nar suyu elde edilmiştir. İnoküle edilmiş nar suyu, mikrokapilar tüp içine mühürlenmiştir. Mikrotüpler 50, 52 ve 54±1°C’deki önceden belirlenmiş zaman aralıklarında su banyolarına batırılarak ısıl işlem uygulanmıştır. Canlı kalan bakteri popülasyonları tryptic soy agar (TSA) üzerinde sayılmıştır. S. Typhimurium nar suyunda en düşük termal direnci göstermiştir. Düşük sıcaklıklarda E. coli O157:H7 ısıl işleme karşı daha dirençliyken, yüksek sıcaklıklarda L. monocytogenes daha fazla termal tolerans göstermiştir. Asit adaptasyonu, E. coli O157:H7’nin direncini azaltırken, S. Typhimurium’un 50°C’de, L. monocytogenes’in ise bütün sıcaklıklarda termal inaktivasyon süresini artırmıştır. Aside adapte olmayan jenerik E. coli 50 ve 52°C’de, aside adapte L. monocytogenes 54°C’de uygulanan ısıl işleme en dayanıklı olan mikroorganizma olmuştur. Nar suyu için elde edilen termal inaktivasyon süreleri diğer meyve sularına göre daha düşük sıcaklıklarda test edilebilmiştir. Bunun sebebi olarak nar suyunun doğal antimikrobiyal etkisi ve diğer meyve sularına oranla daha asidik olmasından kaynaklandığı düşünülmektedir.

Thermal Resistance of Acid Adapted and Non-Adapted Stationary Phase Escherichia coli O157:H7, Salmonella enterica Typhimurium and Listeria monocytogenes in Pomegranate Juice

The purpose of this study was to investigate the thermal resistance of acid adapted and non-adapted stationary phase Escherichia coli O157:H7, Salmonella enterica Typhimurium and Listeria monocytogenes in pomegranate juice. In addition, the performance of generic E. coli was evaluated as an indicator. Non-adapted stationary phase cells were grown by incubating inoculated tryptic soy broth without glucose (TSB-NG) at 36±1°C for 18±2 hours. Tryptic soy broth with 1% glucose (10 g/l; TSBG) was used for acid adaptation. All media used for L. monocytogenes was supplemented with 0.6% yeast extract. After washing the cells with peptone, 5 ml of pasteurized pomegranate juice was added onto the pellet to obtain inoculated juice with a initial concentration of 107 -1010 log CFU/ml. Inoculated pomegranate juice was sealed into the microcapillary tubes. Microtubes were heat treated in waterbaths at 50, 52 and 54±1°C by immersing at pre-determined time intervals. Survived populations were counted on tryptic soy agar (TSA). S. Typhimurium had the lowest thermal resistance in pomegranate juice. At 50°C, E. coli O157:H7 was the most resistant, whereas L. monocytogenes was more thermally tolerant at 52 and 54°C. Acid adaptation decreased the thermal resistance of E. coli O157:H7, but increased the heat resistance of L. monocytogenes at all tested temperatures significantly. Thermal tolerance of S. Typhimurium increased only at 50°C. The most resistant microorganism was non-adapted generic E. coli at 50 and 52°C; acid-adapted L. monocytogenes had the most thermal tolerance at 54°C. Thermal inactivation of microorganisms in pomegranate juice could be tested at lower temperatures compare to other fruit juices. This may be due to the natural antimicrobial effect and more acidic content of pomegranate juice.

___

  • Aviram M, Dornfeld L, Rosenblat M, Volkona N, Kaplan M, Coleman R, Hayek T, Presser D, Fuhrman B. 2000. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LLD, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein Edeficientmice. Am. J. Clin. Nutr. 71(5): 1062–1076. DOI: 10.1093/ajcn/71.5.1062
  • Aviram M, Dornfeld L. 2001. Pomegranate juice consumption inhibits serum angiotens in converting enzyme activity and reduces systolic blood pressure. Atherosclerosis. 158(1): 195–198. DOI: 10.1016/S0021-9150(01)00412-9
  • Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, Volkova N, Presser D, Attias J, Liker H, Hayek T. 2004. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 23(3): 423–433. DOI: 10.1016/j.clnu.2003.10.002
  • Buchanan RL, Edelson SG. 1996. Culturing enterohemorrhagic Escherichia coli O157:H7 in the presence and absence of glucose as a simple means of evaluating the acid tolerance of stationary-phase cells. Appl. Environ. Microbiol. 62(11): 4009–4013. PMID: 8899990
  • Cemeroğlu B, Artık N. 1990. Isıl işlem ve depolama koşullarının nar antosiyaninleri üzerine etkisi. Gıda 15(1): 13–19.
  • Centers for Disease Control and Prevention (CDC). 2014. Foodborne Outbreak Online Database (FOOD). Available from: http://wwwn.cdc.gov/foodborneoutbreaks/Default.aspx. [Accessed 28 October 2014].
  • Centers for Disease Control and Prevention (CDC). 2015. Analysis and evaluation of preventive control measures for the control and reduction/elimination of microbial hazards on fresh and fresh-cut produce: Chapter IV. Outbreaks tables. Available from: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesf orFoodProcesses/ucm091270.htm. [Accessed 25 March 2016].
  • Doyle ME, Mazotta AS, Wang T, Wiseman DW, Scott VN. 2001. Heat resistance of Listeria monocytogenes. J. Food Prot. 64(3): 410–429. DOI: 10.4315/0362-028X-64.3.410
  • Enache E, Mathusa EC, Elliot PH, Black DG, Chen Y, Scott VN, Schaffner DW. 2011. Thermal resistance parameters for Shiga Toxin–Producing Escherichia coli in apple juice. J. Food Prot. 74(8): 1231–1237. DOI: 10.4315/0362-028X.JFP10-488
  • Danyluk MD, Goodrich-Schneider RM, Schneider KR, Harris LJ, Worobo RW. 2012. Outbreaks of foodborne disease associated with fruit and vegetables juice, 1922-2010. EDIS Document FSHN 12-04. Available from: http://ucfoodsafety.ucdavis.edu/files/223883.pdf. [Accessed 28 July 2018].
  • Food and Drug Administration (FDA). 2001. Federal Register Final Rule – 66 FR 6137, January 19, 2001: Hazard Analysis and Critical Control Point (HACCP); Procedures for the Safe and Sanitary Processing and Importing of Juice. Available from: https://www.federalregister.gov/documents/2001/01/19/01- 1291/hazard-analysis-and-critical-control-point-haacpprocedures-for-the-safe-and-sanitary-processing-and. [Accessed 28 July 2018].
  • Food and Drug Administration (FDA). 2004. Guidance for Industry: Juice HACCP Hazards and Controls Guidance First Edition; Final Guidance. Available from: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDo cumentsRegulatoryInformation/Juice/ucm072557.htm. [Accessed 28 July 2018].
  • Gabriel AA, Albura MP, Faustino KC. 2015. Thermal death times of acid habituated Escherichia coli and Salmonella enterica in selected fruit beverages. Food Control, 55, 236– 241. DOI: 10.1016/j.foodcont.2015.03.002.
  • Gabriel AA, Nakano H. 2011. Effects of culture conditions on the subsequent heat inactivation of E. coli O157:H7 in apple juice. Food Control 22(8): 1456–1460. DOI: 10.1016/ j.foodcont.2011.03.011
  • Gıda, Tarım ve Hayvancılık Bakanlığı (GTHB). 2011. Türk Gıda Kodeksi Mikrobiyolojik Kriterler Yönetmeliğinde. Available from: http://www.resmigazete.gov.tr/eskiler/2011/12/ 20111229M3-6.htm. [Accessed 28 July 2018].
  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA. 2000. Antioxidant activity of pomegranate juice and ıts relationship with phenolic composition and processing. J. Agric. Food Chem. 48(10): 4581–4589. DOI: 10.1021/jf000404a
  • Haberbeck LU, Wang X, Michiels C, Devlieghere F, Uyttendaele M, Geeraerd AH. 2017. Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains. Int. J. Food Microbiol. 241, 206–214. DOI: 10.1016/j.ijfoodmicro.2016.10.006.
  • Ingham SC, Uljas HE. 1998. Prior storage conditions ınfluence the destruction of Escherichia coli O157:H7 during heating of apple cider and juice. J. Food Prot. 61(4): 390–394. DOI: 10.4315/0362-028X-61.4.390
  • Jayaprakasha GK, Negi PS, Jena BS. 2006. Antimicrobial activities of pomegranate. In, Pomegranates, Ancient roots to Modern Medicine. Seeram P. Schulman RN, Heber D. (Eds.). Taylor &Francis Group LLC, CRC press, Boca Raton FL, pp. 167–177. ISBN 9780849398124
  • Karabıyıklı Ş, Değirmenci H, Karapınar M. 2014. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella Typhimurium and Listeria monocytogenes. LWT-Food Sci. Technol. 55 (2): 421–425. DOİ: 10.1016/j.lwt.2013.10.037.
  • Mak PP, Ingham BH, Ingham SC. 2001. Validation of apple cider pasteurization treatments against Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. J. Food Prot. 64(11): 1679–1689. DOI: 10.4315/0362-028X-64.11.1679
  • Mazzotta AS. 2001. Thermal inactivation of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in fruit juices. J. Food Prot. 64(3): 315–320. DOI: 10.4315/0362-028X-64.3.315
  • Ryu JH, Beucha LR. 1998. Influence of acid tolerance responses on survival, growth, and thermal cross-protection of Escherichia coli O157:H7 in acidified media and fruit juices. Int. J. Food Microbiol. 45(3): 185–193. DOI: 10.1016/S0168-1605(98)00165-2
  • Ryu JH, Deng Y, Beuchat LR. 1999. Behavior of acid-adapted and unadapted Escherichia coli O157:H7 when exposed to reduced pH achieved with various organic acids. J. Food Prot. 62(5): 451–455. DOI: 10.4315/0362-028X-62.5.451
  • Saxena AK, Manan JK, Berry SK. 1987. Pomegranates: Postharvest technology, chemistry & processing. Indian Food Packer 4: 43–60.
  • Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D. 2008. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 56(4): 1415–1422. DOI: 10.1021/jf073035s
  • Sharma M, Adler BB, Harrison MD, Beuchat LR. 2005. Thermal tolerance of acid-adapted and unadapted Salmonella, Escherichia coli O157H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. Lett. Appl. Microbiol. 41(6): 448–453. DOI: 10.1111/j.1472-765X.2005.01797.x
  • Splittstoesser DF, McLellan MR, Churey JJ. 1996. Heat resistance of Escherichia coli O157:H7 in apple juice. J. Food Prot. 59(3), 226–229. DOI: 10.4315/0362-028X-59.3.226
  • Topalcengiz Z, Danyluk MD. 2017. Thermal inactivation responses of acid adapted and non-adapted stationary phase Shiga toxin-producing Escherichia coli (STEC), Salmonella spp. and Listeria monocytogenes in orange juice. Food Control 72: 73–82. DOI: 10.1016/j.foodcont.2016.07.014
  • Topalcengiz Z. 2019. Assessment of Recommended Thermal Inactivation Parameters for Fruit Juices. LWT-Food Sci. Technol. (In Press).
  • Vojdani JD, Beuchat LR, Tauxe RV. 2008. Juice-associated outbreaks of human illness in the United States, 1995 through 2005. J. Food Prot. 71(2): 356–364. DOI: 10.4315/0362- 028X-71.2.356
  • Usaga J, Worobo RW, Padilla-Zakour OI. 2014. Effect of acid adaptation and acid shock on thermal tolerance and survival of Escherichia coli O157:H7 and O111 in apple juice. J. Food Prot. 77(10): 1656–1663. DOI: 10.4315/0362-028X.JFP-14- 126
  • Zarfeshany A, Asgary S, Javanmard SH. 2014. Potent health effects of pomegranate. Adv. Biomed. Res. 3:100. DOI: 10.4103/2277-9175.129371.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)