pH duyarlı hidrazon bağıyla mPEG-b-PCL kopolimerine konjuge edilen doksorubisin miktarının belirlenmesi
Amaç: Bu çalışmanın amacı, antikanser bir ilaç olan Doksorubisinin (DOX) sentezlenen metoksi poli(etilen glikol)-blok-polikaprolakton (mPEG-b-PCL) polimerine pH-duyarlı hidrazon bağları aracılığıyla bağlanabileceği etkin ortamı bulmak ve konjuge edilmiş ilaç miktarını belirlemektir. Yöntem: DOX konjugasyon işlemi iki farklı ortamda [dimetil sülfoksit (DMSO) ve methanol trifloroasetik asit (MeOH-TFA)] gerçekleştirilmiştir. Konjuge ilaç miktarı iki farklı yöntemle belirlenmiştir. Bir metot, ph duyarlılığını göz ardı ederek konjuge yapının kloroform:methanol (Ch:MeOH, 1:1 v/v) çözeltisi içerisinde çözünmesi sonrasında, diğer metot pH’ya duyarlı hidrazon bağlarının asidik ortamda [0.1 M hidroklorik asit (HCl), derişik HCl (12 M HCl) ve derişik sülfürik asit (18.3 M H2SO4) olarak üç farklı ortamda] kırılması sonrasında uygulanmıştır. Bulgular: En yüksek konjugasyon verimliliği MeOHTFA çözeltisi içerisinde konjugasyon sağlandığında ve polimer-ilaç konjugatları konsantre sülfürik asit ile muamele edildikten sonra elde edilmiştir. Sonuç: MeOH-TFA yönteminin DOX’un mPEG-b-PCL kopolimerine konjugasyonu için iyi bir yöntem olduğu ve H2SO4 (18.3 M) yönteminin hidrazon konjugasyonu yoluyla polimere bağlı DOX miktarının belirlenmesi için literatürde mevcut diğer yöntemlerden daha iyi olduğu bulunmuştur.
Determination of doxorubicin amount conjugated to mPEG-b- PCL copolymer via pH sensitive hydrazone bond
Objective: The aim of this study was to find the efficient medium to bind an anticancer drug, Doxorubicin (DOX), to a synthesized polymer, methoxy poly(ethylene glycol)-block-polycaprolactone (mPEG-b-PCL) via pH sensitive hydrazone bonds and to determine the amount of conjugated drug. Methods: DOX conjugation was carried out in two different media [dimethyl sulfoxide (DMSO) and methanol-trifluoroacetic acid (MeOH-TFA)]. The amount of conjugated drug was determined with two different methods. One method was applied the dissolution of the conjugate in chloroform: methanol (Ch: MeOH, 1: 1 v/v) solution without considering pH responsiveness, and the other method was after breaking pH sensitive hydrazone bonds in acidic medium [using three different media as 0.1 M hydrochloric acid (HCl), concentrated HCl (12 M HCl) and concentrated sulfuric acid (18.3 M H2SO4)]. Results: The highest conjugation efficiency was obtained when the conjugation was achieved in MeOHTFA solution, and for the polymer-drug conjugates after the treatment with concentrated sulfuric acid. Conclusion: It was concluded that, MeOH-TFA method was a good method for conjugation of DOX to mPEG-b-PCL copolymer, and H2SO4 (18.3 M) method was better than any other present in literature for determination of the amount of DOX linked to the polymer via hydrazone conjugation.
___
- Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG-epirubicin conjugates with high drug loading. J Bioact Compat Polym, 2005; 20 (3): 213-30. doi:10.1177/0883911505053377.
- 2. Bagherifam S, Skjeldal FM, Griffiths G, Mælandsmo GM, Engebråten O, Nyström B, et al. pH-responsive nano carriers for doxorubicin delivery. Pharm Res, 2015; 32: 1249-63. doi: 10.1007/s11095-014-1530- 0.
- 3. Kavand A, Anton N, Vandamme T, Serra CA, Seng DC. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release. 2020; 321: 285-311. doi.org/10.1016/j. jconrel.2020.02.019.
- 4. Malikmammadov E, Hasirci N. Dual- and Multistimuli-Responsive Polymers for Biomedical Applications. In: Aguilar MR, Román JS, eds. Smart Polym their Appl. Second Edi. Woodhead Elsevier Ltd, 2019: 255–78. doi.org/10.1016/B978-0-08- 102416-4.00008-9.
- 5. Li Y, Yang HY, Thambi T, Park JH, Lee DS. Chargeconvertible polymers for improved tumor targeting and enhanced therapy. Biomaterials, 2019; 217: 119299. doi.org/10.1016/j. biomaterials.2019.119299.
- 6. Chang M, Zhang F, Wei. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. J Drug Target, 2016; 24: 475-91. doi: 10.3109/1061186X.2015.1108324.
- 7. Faal MM, Jafari A, Mirhadi E, Askarizadeh E, Golichenari B, Hadizadeh F, et al. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm, 2019; 572: 118716. doi.org/10.1016/j.ijpharm.2019.118716.
- 8. Sahin A, Eke G, Buyuksungur A, Hasirci N, Hasirci V. Nuclear targeting peptide-modified, DOXloaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes, J Biomater Sci, Polym Ed, 2018, 29, 507-19. doi.org/ 10.1080/09205063.2018.1423812.
- 9. Etrych T, Subr V, Laga R, Rihova B, Ulbrich K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur J Pharm Sci, 2014; 58: 1-12. doi: 10.1016/j.ejps.2014.02.016.
- 10. Lale SV, Kumar A, Naz F, Bharti AC, Koul V. Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polym Chem, 2015; 6: 2115-132. doi.org/10.1039/c4py01698j.
- 11. Xiong W, Peng L, Chen H, Li Q. Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomedicine. 2015;10: 2985-96. doi: 10.2147/IJN.S79605.
- 12. Mariani E, Lisignoli G, Borzì RM, Pulsatelli L. Biomaterials: Foreign bodies or tuners for the immune response? Int J Mol Sci, 2019; 20: 636. doi: 10.3390/ijms20030636.
- 13. Öz UC, Bozkır A. Polimerik veziküller ve biyolojik uygulamaları. Turk Hij Den Biyol Derg, 2018; 75(4): 443-58. doi:10.5505/TurkHijyen.2018.87369.
- 14. Gong CY, Wang YJ, Wang XH, Wei XW, Wu Q, Wang B, et al. Biodegradable self-assembled PEGPCL- PEG micelles for hydrophobic drug delivery, part 2: In vitro and in vivo toxicity evaluation. J Nanoparticle Res, 2011; 13: 721-31. doi:10.1007/ s11051-010-0071-7.
- 15. Hu C, Chen Z, Wu S, Han Y, Wang H, Sun H, et al. Micelle or polymersome formation by PCL-PEGPCL copolymers as drug delivery systems. Chinese Chem Lett, 2017; 28: 1905-9. doi.org/10.1016/j. cclet.2017.07.020.
- 16. Chen Y, Zhang YX, Wu ZF, Peng XY, Su T, Cao J, et al. Biodegradable poly(ethylene glycol)-poly(ϵ- carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery. RSC Adv, 2016; 6: 58160-72. doi.org/10.1039/C6RA06040D.
- 17. Isik G, Hasirci N, Tezcaner A, Kiziltay A. Multifunctional periodontal membrane for treatment and regeneration purposes. J Bioact Compat Polym, 2020; 35: 117-38. doi. org/10.1177/0883911520911659.
- 18. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011; 5: 3679-92. doi.org/10.1021/nn200007z.
- 19. Ye WL, Zhao YP, Li HQ, Na R, Li F, Mei Q, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep, 2015; 5: 14614. doi: 10.1038/srep14614 .
- 20. Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials, 2013; 34: 4544-54. doi.org/10.1016/j.biomaterials.2013.02.071.
- 21. Gatti S, Agostini A, Palmiero UC, Colombo C, Peviani M, Biffi A, et al. Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading. Nanotechnology, 2018; 29: 305602. doi: 10.1088/1361-6528/aac0d3.
- 22. Song H, Wang R, Xiao H, Cai H, Zhang W, Xie Z, et al. A cross-linked polymeric micellar delivery system for cisplatin(IV) complex. Eur J Pharm Biopharm, 2013; 83: 63-75. doi.org/10.1016/j. ejpb.2012.09.004.
- 23. Etrych T, Jel´ınkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release, 2001; 73: 89-102. doi: 10.1016/s0168- 3659(01)00281-4.
- 24. del Rosario LS, Demirdirek B, Harmon A, Orban D, Uhrcih KE. Micellar nanocarriers assembled from doxorubicin-conjugated amphiphilic macromolecules (DOX-AM). Macromol Biosci, 2010; 10: 415-23. doi: 10.1002/mabi.200900335.
- 25. National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 31703, Doxorubicin. Retrieved May 24, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/ Doxorubicin
- 26. Configliacchi E, Razzano G, Rizzo V, Vigevani A. HPLC methods for the determination of bound and free doxorubicin, and of bound and free galactosamine, in methacrylamide polymer-drug conjugates. J Pharm Biomed Anal, 1996; 15: 123- 29. doi: 10.1016/0731-7085(96)01825-0.