Outbreak of lead toxicity during rebar production in a steel mill

Objective: Largely due to the widespread use of unleaded petrol and lead-free dyes, the lead toxicity nowadays is associated with occupational exposure rather than environmental exposure in adults. This study aims to identify the characteristics of lead exposure cases and evaluate working environment based on workers’ statement in a sector where lead monitoring is not routinely performed during health surveillances and to examine the poisoning of lead toxicity. Moreover, we aimed to start a caution on management and treatment of these cases in our country. Methods: This descriptive study conducted in hospital which is authorized to diagnose occupational diseases between April and November 2018. In order to evaluate the sociodemographic characteristics, working life characteristics, workplace environment and risk factors and lead toxicity complaints of 34 cases with the elevated blood lead level (BLL), a 38 item questionnaire form was applied. Physical examination findings, laboratory findings, comorbidities and treatment protocols were obtained from the medical records. Results: 8.3% (n = 34) of the workers applied with a preliminary diagnosis of lead toxicity. Median duration of work was 26 months, average working time was 53.3±7.2 hours/week. The mean BLL was 44.0 ±5.1 μg/dl at the workplace surveillance, 38.4±11.1 μg/dl determined in the hospital and 36.1±8.9 μg/dl during hospital check. The Blood antimony (Sb) level was 5.5±1.4 μg/dl and mean blood manganese (Mn) level were 17.8±5.9 μg/L and 1.5±0.8 μg/L after the 15-day hospitalization. Conclusion: The iron and steel processing sector is among the sectors that should be carefully monitored in terms of lead, Mn, and Sb exposure. The legislations and the exposure limits of toxic metals and the biological limit values should be updated in accordance with scientific data. Chelation treatment of patients with clinical findings should be planned by confirming the accumulation of lead in bone tissue.

İnşaat demiri üreten bir çelik fabrikasında görülen kurşun zehirlenmesi salgını

Amaç: Erişkinlerde kurşun zehirlenmesi, günümüzde kurşunsuz benzin ve kurşun içermeyen boya kullanımının yaygınlaşması nedeniyle artık çevresel etkilenimden çok mesleki etkilenime bağlı olarak görülmektedir. Bu araştırma, sağlık gözetimi sırasında rutin olarak kurşun izleminin yapılmadığı bir sektörde tespit edilen kurşun etkilenimli olguların ve çalışma ortamının özelliklerini tanımlaması ve bu işyerindeki kurşun zehirlenmesinin irdelenmesi amacıyla yapılmıştır. Ayrıca, ülkemizde bu vakaların yönetimine ve tedavisine dikkat çekilmesi hedeflenmiştir. Yöntem: Bu tanımlayıcı araştırma, meslek hastalıkları tanısı koymaya yetkili bir hastanede Nisan- Kasım 2018 tarihleri arasında yürütülmüştür. Kan kurşun düzeyi (KKD) yüksekliği saptanan 34 olguya sosyodemografik özelliklerini, çalışma yaşamına ilişkin özelliklerini, çalışma ortamını ve risk faktörlerini ve kurşun etkilenimine bağlı şikayetlerini değerlendirmek amacıyla oluşturulan 38 maddelik bir soru formu uygulanmıştır. Fiziksel muayene bulguları, laboratuvar bulguları, komorbiditeler ve tedavi protokolleri tıbbi kayıtlardan elde edilmiştir. Bulgular: Çalışanların %8,3’ü (n=34) kurşun toksisitesi ön tanısı ile başvurmuştur. Ortalama çalışma süresinin 26 ay, ortalama haftalık çalışma süresinin ise 53,3±7.2 saat olduğu belirlenmiştir. Ortalama KKD, iş yerinde aralıklı kontrol muayenesi sırasında 44,0±5,1 μg/dl, hastanede alınan ilk örnekte 38,4±11,1 μg/dl ve hastanede kontrol örneğinde 36,1±8,9 μg/dl bulunmuştur. Kan antimon seviyesi 5,5±1,4 μg/dl, ortalama kan mangan seviyesi 17,8±5,9 μg/L ve 15 günlük yatış sonrasında 1,5±0,8 μg/L olarak tespit edilmiştir. Sonuç: Demir çelik sektörü kurşun, mangan ve antimon maruziyeti açısından dikkatle izlenmesi gereken sektörler arasında yer almaktadır. Toksik metallerin mevzuatı ve maruz kalma sınırları ile biyolojik limit değerleri bilimsel verilere uygun olarak güncellenmelidir. Klinik bulguları olan hastaların şelasyon tedavisi, kemik dokusunda kurşun birikimi değerlendirilerek planlanmalıdır.

___

1. Holland MG, Cawthon D. Workplace lead exposure. J Occup Environ Med, 2016; 58 (12): 371-4.

2. Guidelines for the lead-exposed worker, occupational lead poisoning prevention program. https://www.cdph.ca.gov/Programs/CCDPHP/ D E O D C / O H B / O L P P P / C D P H % 2 0 D o c u m e n t % 2 0 Library/medgdln.pdf, Accessed Date: March 30, 2019.

3. Reference Blood Lead Levels (BLLs) for Adults in the U. S, https://www.cdc.gov/niosh/topics/ ables/ReferenceBlood lead levels (BLLs) for adults in the U.S., Accessed Date: April 02, 2019.

4. Lead, elevated blood levels 2016 case Definition h t t p s : / / w w w n . c d c . g o v / n n d s s / c o n d i t i o n s leadelevated-blood-levels/case-definition/2016/, Accessed Date: April 02, 2019.

5. Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, et al. Evaluation and management of lead exposure. Ann Occup Environ Med, 2015; 15: 27-30.

6. Lewis R, Kosnet MJ. Metals. In: Ladou J, Harrison R, eds. Current Diagnosis&Treatment, Occupational and Environmental Medicine. 5th Ed. New York: McGraw-Hill Education, 2014: 1044-1096.

7. Chettle DR, Scott MC, Somervaille LJ. Lead in bone: sampling and quantitation using K X-rays excited by 109Cd. Environ Health Perspect, 1991; 91: 49-55.

8. Measures for working with chemical substances http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatK od=7.5.18709&MevzuatIliski=0&sourceXmlSearch, Accessed Date: April 01, 2019.

9. NIOSH pocket guide to chemical Hazards. https:// www.cdc.gov/niosh/docs/2005-149/pdfs/2005- 149.pdf, Accessed Date: April 02, 2019.

10. Anonymous. Regulations and guidelines applicable to lead and lead compounds. OSHA, 2014; 403-13. 11. Basaran N, Undeger U. Effects of lead on immune parameters in occupationally exposed workers. Am J Ind Med, 2000; 38: 349-54.

12. Duydu Y, Suzen HS, Aydin A, Cander O, Uysal H, Isimer A, et al. Correlation between lead exposure indicators and sister chromatid exchange (SCE) frequencies in lymphocytes from inorganic lead exposed workers. Arch Environ Contam Toxicol, 2001; 41 (2): 241-6.

13. Sonmez F, Donmez O, Sonmez HM, Keskinoglu A, Kabasakal C, Mir S. Lead exposure and urinary N-acetyl beta D glucosaminidase activity in adolescent workers in auto repair workshops. J Adolesc Health, 2002; 30(3): 213-6.

14. Duydu Y, Suzen HS. Influence of delta-aminolevulinic acid dehydratase (ALAD) polymorphism on the frequency of sister chromatid exchange (SCE) and the number of high-frequency cells (HFCs) in lymphocytes from lead-exposed workers. Mutat Res, 2003; 540 (1): 79-88.

15. Gurer OH, Sabir HU, Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and leadexposed workers. Toxicology, 2004; 195 (2–3): 147- 54.

16. Duydu Y, Dur A, Suzen HS. Evaluation of increased proportion of cells with unusually high sister chromatid exchange counts as a cytogenetic biomarker for lead exposure. Biol Trace Elem Res, 2005; 104 (2): 121-9.

17. Karakaya AE, Ozcagli E, Ertas N, Sardas S. Assessment of abnormal DNA repair responses and genotoxic effects in lead exposed workers. Am J Ind Med, 2005; 47 (4): 358-63.

18. Engin AB, Tuzun D, Sahin G. Evaluation of pteridine metabolism in battery workers chronically exposed to lead. Hum Exp Toxicol, 2006; 25 (7): 353-9.

19. Yılmaz H, Keten A, Karacaoğlu E, Tutkun E, Akçan R. Analysis of the hematological and biochemical parameters related to lead intoxication. J Forensic Leg Med, 2012; 19 (8): 452-4.

20. Ozturk M, Yavuz B, Ozkan S, Aytürk M, Akkan T, Ozkan E, et al. Lead exposure is related to impairment of aortic elasticity parameters. J Clin Hypertens, 2014; 16 (11): 790-3.

21. Sipahi H, Girgin G, Palabıyık SS, Tutkun E, Yılmaz ÖH, Baydar T. Possible changes of new-generation inflammation markers with occupational lead exposure. J Occup Health, 2017; 59 (4): 345-51.

22. Wrońska-Nofer T, Pisarska A, Trzcinka-Ochocka M, Hałatek T, Stetkiewicz , Braziewicz J, et al. Scintigraphic assessment of renal function in steel plant workers occupationally exposed to lead. J Occup Health, 2015; 57 (2): 91-9.

23. Afridi HI, Talpur FN, Kazi TG, Kazi N, Arain SS, Shah F. Estimation of calcium, magnesium, cadmium, and lead in biological samples from paralyzed quality control and production steel mill workers. Environ Monit Assess, 2015; 187 (6): 350.

24. Code of practice on safety and health in the iron and steel industry. http://www.ilo.org/wcmsp5/ groups/public/@ed_protect/@protrav/@safework/ documents/normativeinstrument/wcms_112443. Pdf, Accessed Date: March 05, 2019.

25. O’Neal SL, Zheng WI. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep, 2015; 2 (3): 315-28.

26. Implementing regulation on maximum seven and a half hours or lesser work for health. http://www resmigazete.gov.tr/ eskiler/2013/07/20130716-2 htm. Accessed Date: March 07, 2019.

27. Lead toxicity: what is the biological fate of lead in the body? https://www.atsdr.cdc. gov/csem/lead/ docs/CSEM-Lead_toxicity_508.pdf, Accessed Date: March 10, 2019.

28. National biomonitoring program: lead . https:/ www.cdc.gov/biomonitoring/Lead_ BiomonitoringSummary.html, Accessed Date: March 10, 2019.

29. List of recommended healthbased biological limit values (BLVs) and biological guidance values (BGVs). https://ec.europa.eu/social/main.jsp?catId=148&l angId=en&internal_pagesId=684&moreDocuments= yes&tableName=INTERNAL_PAGES, Accessed Date: March 20, 2019.

30. Tatar ÇP. Kurşun maruziyetinin iş sağlığı ve güvenliği açısından değerlendirilmesi (akü, maden ve metal işyerlerinde). İş Sağlığı ve Güvenliği Uzmanlık Tezi / Araştırma. Ankara: T.C. Çalışma Ve Sosyal Güvenlik Bakanlığı. 2014.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Yayın Aralığı: 4
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu