Nitrik oksitin kanser gelişimi ve metastaz üzerine etkileri

Nitrik oksit (NO), birçok hücre içi ya da hücreler arası uyarı yolağında görev alan benzersiz bir moleküldür. Farklı kanser hücrelerinde ve dokularında saptanan değişik NO düzeylerinin, farklı düzenleyici etkiler ortaya koyduğu birçok çalışmada gösterilmiştir. Yapısal olarak üretilen NO, kanser hücresi fenotipinin ortaya konmasında önemli rol üstlenmektedir. Bu; kanserin çevre dokulara penetre olmasını, uzak bölgelere yayılmasını ve gelişimi için gerekli olan kaynaklara ulaşabilmesi sağlayacak, en yüksek kan akımını alacağı damarlanma işlevini; kapsamaktadır. Genel olarak, dokuda düşük derişimlerde sentezlenen NO'in etkileri pro-kanseröz olarak değerlendirilebilir. Çok yüksek derişimlerde ise NO, apopitozu, nekrozu uyararak veya anjiyojenezi inhibe ederek, güçlü bir anti-kanser madde olarak görev yapmaktadır. Öte yandan, NO düzeylerindeki artışın, metastaz basamakları üzerine olan etkileri sebebiyle kanserin farklı lokalizasyonlarda büyümesini ve ilerleyişini arttırabildiği ortaya konmuştur. Metastazda NO'in oynadığı rol, hücre tipi, NO derişimi, katılan organlar veya NO'in kanseral sürece katıldığı dönem gibi, farklı faktörlerden etkilenmektedir. NO'in bu çok yönlü ve farklı etkileri, kanserin büyümesini yavaşlatmak ve kemoterapi/radyoterapi etkinliğini arttırmak amacıyla, kanserin birçok preklinik modellerinde kullanılmaktadır. Bu yaklaşımlar yeni anti-kanser stratejileri olarak ön görülmektedir

The effects of nitric oxide on cancer development and metastasis

Nitric oxide (NO) is unique molecule involved in many intracellular or intercellular signaling pathways and its importance varies from cell to cell. It is demonstrated that heterogeneous regulating responses to various NO levels have been observed in in different types of tumors. Constitutively expressed NO plays an important role in drawing up the phenotype of tumor cells. The roles of NO in tumor growth cover the tumor penetration into the surrounding tissues to spread to remote areas and the development of the neovascularization to obtain the highest blood flow for the necessary resources. Generally, effects of NO at low concentrations considered as protumoral. In very high concentrations of NO, it serves as a potent anti-tumor agent by inhibiting angiogenesis or inducing apoptosis and/or necrosis. While NOS activation is expected to show anti-tumor effect, it has been demonstrated that NO may increase the progression and propagation of cancer due to the effects on metastasis process. The effect of NO on metastasis is affected by different factors such as cell type, dose, the types of participating organs or the period in which NO involved in the tumor development. These different characteristic effects of NO expression are used therapeutically in many preclinical models of cancer in order to increase the inhibition of tumor growth and chemotherapy/ radiotherapy efficiency. These approaches are envisaged as new anticancer strategies

___

  • 1. Huerta S, Chilka S, Bonavida B. Nitric oxide donors: Novel cancer therapeutics. Int J Oncol, 2008; 33: 909-27.
  • 2. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron, 1992; 8: 3-11.
  • 3. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev, 2001;81: 209-37.
  • 4. Wang Y, Newton DC, Marsden PA. Neuronal NOS: gene structure, mRNA diversity and functional relevance. Crit Rev Neurobiol, 1999; 13: 21-43.
  • 5. Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem, 1992; 267: 14519-22.
  • 6. Kroncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol, 1998; 113: 147-156.
  • 7. Kroncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol, 1998; 113: 147-156.
  • 8. Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine and cyclic GMP in signal transduction. Med Sci Monit, 2001; 7(4): 801–19.
  • 9. Gow AJ, Ischiropoulos H. Nitric oxide chemistry and cellular signaling. J Cell Physiol, 2001; 187(3): 277– 82.
  • 10. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Med. Res. Rev, 2007; 27: 317–52.
  • 11. Zaccolo M, Movsesian MA. cAMP and cGMP Signaling Cross-Talk Role of Phosphodiesterases and Implications for Cardiac Pathophysiology. Circulation Research, 2007; 8; 100(11):1569–78.
  • 12. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer, 2006; 6(7), 521–34.
  • 13. Foster MW, Mc Mahon TJ, Stamler JS. S-nitrosylation in health and disease. Trends Mol Med, 2003; 9(4): 160 –8.
  • 14. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett, 2003;140–141:105–112.
  • 15. Blaise GA, Gauvin D, Gangal M, Authier S. Nitric oxide, cell signaling and cell death. Toxicology, 2005; 208: 177-92.
  • 16. Demirel-Yilmaz E, Cenik B, Ozcan G, Derici MK. Various phosphodiesterase activities in different regions of the heart alter the cardiac effects of nitric oxide. J Cardiovasc Pharmacol, 2012; 60(3): 283-92.
  • 17. Derici K, Samsar U, Demirel-Yilmaz E. Nitric oxide effects depend on different mechanisms in different regions of the rat heart. Heart Vessels, 2012; 27(1): 89-97.
  • 18. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol, 1997;15: 323-50.
  • 19. Kroncke KD, Fehsel K, Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection - how, why, when and where? Nitric Oxide, 1997; 1: 107-120.
  • 20. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol, 2001; 2: 149-156.
  • 21. Laurent M, Lepoivre M, Tenu JP. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J, 1996; 3141: 109-113.
  • 22. Brennan PA, Downie IP, Langdon JD, Zaki GA. Emerging role of nitric oxide in cancer. Br J Oral Maxillofac Surg, 1999; 37: 370-73.
  • 23. Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA, 1985; 82: 7738-42.
  • 24. Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science, 1987; 235: 473-76.
  • 25. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancerbiology: searching for therapeutic opportunities. Med Res Rev, 2007; 27(3): 317-52.
  • 26. Fitzpatrick B, Mehibel M, Cowen RL, Stratford IJ. iNOS as a therapeutic target for treatment of human tumors. Nitric Oxide. 2008;19(2):217-24.
  • 27. Bonavida B, Khineche S, Huerta-Yepez S, Garban H. Therapeutic potential of nitric oxide in cancer, Drug Resist. Updat. 2006; 9(3):157–173.
  • 28. Chinje EC, Stratford IJ. Role of nitric oxide in growth of solid tumours: a balancing act. Essays Biochem, 1997; 32: 61-72.
  • 29. Gauthier N, Arnould L, Chantome A, Reisser D, Bettaieb A, Reveneau S. et al., To stimulate or to inhibit nitric oxide production in mammary tumors? Bull Cancer, 2004; 91(9): 705–12.
  • 30. Radomski MW, Jenkins DC, Holmes L, Moncada S. Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res, 1991; 51(22): 6073–78.
  • 31. Jones MK, Tsugawa K, Tarnawski AS, Baatar D. Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem Biophys Res Commun, 2004; 318(2): 520–28.
  • 32. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res, 1994; 54: 1352-54.
  • 33. Zafirellis K, Zachaki A, Agrogiannis G, Gravani K. Inducible nitric oxide synthase expression and its prognostic significance in colorectal cancer. APMIS, 2010;118(2): 115–24.
  • 34. Andrade SP, Hart IR, Piper PJ. Inhibitors of nitric oxide synthase selectively reduce flow in tumorassociated neovasculature. Br J Pharmacol, 1992;107(4):1092–95.
  • 35. Kennovin GD, Flitney FW, Hirst DG. ‘‘Upstream” modification of vasoconstrictor responses in rat epigastric artery supplying an implanted tumour. Adv Exp Med Biol, 1994; 345: 411–16.
  • 36. Kennovin G.D et al, Biology of Nitric Oxide, Portland Press, 1994; 473–79.
  • 37. Orucevic A, Lala PK. Effects of N(g)-methyl-Larginine, an inhibitor of nitric oxide synthesis, on interleukin-2-induced capillary leakage and antitumor responses in healthy and tumorbearing mice. Cancer Immunol Immunother, 1996: 42(1): 38–46.
  • 38. de Wilt JH, Manusama ER, van Etten B, van Tiel ST, Jorna AS, Seynhaeve AL et al. Nitric oxide synthase inhibition results in synergistic antitumour activity with melphalan and tumour necrosis factor alpha-based isolated limb perfusions. Br J Cancer, 2000; 83(9): 1176–82.
  • 39. Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY et al. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal, 2016 [Epub ahead of print] PubMed PMID: 27464521.
  • 40. Dong Z, Staroselsky A.H, Qi X, Xie K, Fidler I.J. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells, Cancer Res, 1994; 54(3): 789– 93.
  • 41. Sarih M, Souvannavong V, Adam A. Nitric oxide synthase induces macrophage death by apoptosis, Biochem. Biophys. Res Commun, 1993; 191(2): 503–8.
  • 42. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L et al. JS-K, a GST-activated nitric oxide generator, induces DNA doublestrand breaks, activates DNA damage response pathways and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood, 2007; 110(2):709–18.
  • 43. Xie K, Fidler IJ. Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev, 1998;17(1): 55–75.
  • 44. Worthington J, Robson T, Murray M, O’Rourke M, Keilty G, Hirst DG. Modification of vascular tone using iNOS under the control of a radiationinducible promoter. Gene Ther, 2000:7 (13):1126– 31.
  • 45. Worthington J, Robson T, O’Keeffe M, Hirst DG. Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther, 2002; 9(4): 263–69.
  • 46. Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK et al. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 2004; 64(4): 1386–95.
  • 47. Wardman P, Rothkamm K, Folkes LK, Woodcock M, Johnston PJ. Radiosensitization by nitric oxide at low radiation doses. Radiat Res, 2007; 167: 475–484.
  • 48. Yang L, Wang Y, Guo L, Wang L, Chen W, Shi B. The Expression and Correlation of iNOS and p53 in Oral Squamous Cell Carcinoma. Biomed Res Int, 2015; 637853 doi: 10.1155/2015/637853.
  • 49. García-Cardeña G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem, 1996; 271(44): 27237–40.
  • 50. Phillips PG, Birnby LM. Nitric oxide modulates caveolin-1 and matrix metalloproteinase-9 expression and distribution at the endothelial cell/tumor cell interface. Am. J. Physiol. Lung Cell. Mol. Physiol, 2004; 286(5): L1055– L1065.
  • 51. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem, 1999; 274(17): 11549–56.
  • 52. Li F, Srinivasan A, Wang Y, Armstrong R.C, Tomaselli K.J, Fritz L.C. Cell- specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J. Biol. Chem, 1997; 272(48): 30299– 305.
  • 53. Wen HC, Chuu CP, Chen CY, Shiah SG, Kung HJ, King KL et al. Elevation of soluble guanylate cyclase suppresses proliferation and survival of human breast cancer cells. PLoS One. 2015; 30:10(4): e0125518.
  • 54. Cheng RY, Basudhar D, Ridnour LA, Heinecke JL, Kesarwala AH, Glynn S et al. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways. Nitric Oxide, 2014; 1(43): 17-28.
  • 55. Zhou L, Zhang H, Wu J. Effects of nitric oxide on the biological behavior of HepG2 human hepatocellular carcinoma cells. Experimental and Therapeutic Medicine, 2016;11 (5): 1875-80.
  • 56. Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol. 2015; 6: 486-94.
  • 57. Coulter JA, McCarthy HO, Xiang J, Roedl W, Wagner E, Robson T et al. Nitric oxide-a novel therapeutic for cancer. Nitric Oxide, 2008;19(2):192-8.
  • 58. Williams EL, Djamgoz MB. Nitric oxide and metastatic cell behaviour, BioEssays, 2005;27(12);1228–38.
  • 59. Niu XJ, Wang ZR, Wu SL, Geng ZM, Zhang YF, Qing XL. Relationship between inducible nitric oxide synthase expression and angiogenesis in primary gallbladder carcinoma tissue. World J. Gastroenterol, 2004;10(5): 725–28.
  • 60. Lahiri M, Martin JH. Nitric oxide decreases motility and increases adhesion in human breast cancer cells. Oncol Rep, 2009; 21(2): 275-81.
  • 61. Juang SH, Xie K, Xu L, Wang Y, Yoneda J, Fidler IJ. Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma. Cancer Biother Radiopharm, 1997; 12(3): 167–175.
  • 62. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med, 1995;181(4): 1333– 43.
  • 63. Fu Q, Liu X, Liu Y, Yang J, Lv G, Dong S. MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med, 2015;36(5):1417- 25.
  • 64. Ishikawa T, Yoshida N, Higashihara H, Inoue M, Uchiyama K, Takagi T et al. Different effects of constitutive nitric oxide synthase and heme oxygenase on pulmonary or liver metastasis of colon cancer in mice. Clin. Exp. Metastasis, 2003;20(5): 445–50.
  • 65. Moon BK, Lee YJ, Battle P, Jessup JM, Raz A, Kim HR. Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis. Am J Pathol, 2001; 159 (3):1055–60.
  • 66. Sayed-Ahmad MM, Mohamad MA. Contribution of nitric oxide and epidermal growth factor receptor in anti-metastatic potential of paclitaxel in human liver cancer cell (HepG2). J Egypt Natl Canc Inst 2005; 17(1): 35–41.
  • 67. Fulda S. Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J Cell Mol Med, 2009;13 (7):1221–27.
  • 68. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M et al. Apoptosis and cancer: mutations within caspase genes. J. Med. Genet, 2009; 46(8): 497–510.
  • 69. Gupta SK, Vlahakis NE. Integrin alpha9 beta1 mediates enhanced cell migration through nitric oxide synthase activity regulated by Src tyrosine kinase. J Cell Sci, 2009;122 (Pt 12:2043–54).
  • 70. Ishii Y, Ogura T, Tatemichi M, Fujisawa H, Otsuka F, Esumi H. Induction of matrix metalloproteinase gene transcription by nitric oxide and mechanisms of MMP-1 gene induction in human melanoma cell lines. Int J Cancer, 2003;103(2):161–68.
  • 71. Jespersen C, Doller A, Akool el S, Bachmann M, Muller R, Gutwein P et al. Molecular mechanisms of nitric oxide- dependent inhibition of TPAinduced matrix metalloproteinase-9 (MMP-9) in MCF-7 cells. J Cell Physiol, 2009; 219 (2): 276–87.
  • 72. Sun Y, Liu J, Qian F, Xu Q. Nitric oxide inhibits T cell adhesion and migration by down-regulation of beta1-integrin expression in immunologically liver- injured mice, Int. Immunopharmacol. 2006; 6(4):616–26.
  • 73. Roberts W, Riba R, Homer-Vanniasinkam S, Farndale RW, Naseem KM. Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen. J. Thromb Haemost, 2008; 6(12): 2175–85.
  • 74. Conran N, Gambero A, Ferreira HH, Antunes E, de Nucci G. Nitric oxide has a role in regulating VLA-4-integrin expression on the human neutrophil cell surface. Biochem Pharmacol, 2003;1; 66(1): 43-50.
  • 75. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002;29 (6 Suppl)16: 15–18.
  • 76. Sun MH, Han XC, Jia MK, Jiang WD, Wang M, Zhang H et al. Expressions of inducible nitric oxide synthase and matrix metalloproteinase-9 and their effects on angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol, 2005:14;11(38): 5931-7.
  • 77. Gallo O, Masini E, Morbidelli L, Franchi A, FiniStorchi I, Vergari WA et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst, 1998;15;90(8): 587-96.
  • 78. Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L et al. Angiotensin-(1-7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol, 2014; 171(18): 4222-32.
  • 79. Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6- mediated endothelial nitric oxide production. Blood, 2009;1; 114(14): 3117-26.
  • 80. Kolluru GK, Sinha S, Majumder S, Muley A, Siamwala JH, Gupta R et al. Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis. Nitric Oxide, 2010; 15;22(4):304-15.
  • 81. Bessa X, Elizalde JI, Mitjans F, Piñol V, Miquel R, Panés J, Piulats J, Piqué JM, Castells A. Leukocyte recruitment in colon cancer: role of cell adhesion molecules, nitric oxide, and transforming growth factor beta1. Gastroenterology, 2002;122(4):1122-32.
  • 82. Zhang L, Zeng M, Fu BM. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol, 2016;310(11): H1735-47.
  • 83. Spiecker M, Darius H, Kaboth K, Hübner F, Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol, 1998;63(6):732-9.
  • 84. Cao Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer, 2005; 5(9): 735–43.
  • 85. Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K et al. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res, 2006; 15; 12(4): 1201-7.
  • 86. Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Kodama R, Sanke T, Nakamura Y. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis. BMC Cancer, 2008; 23(8): 340.
  • 87. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res, 2001; 92(4): 439-51.
  • 88. Akbulut H, Altuntas F, Akbulut KG, Ozturk G, Cindoruk M, Unal E, Icli F. Prognostic role of serum vascular endothelial growth factor, basic fibroblast growth factor and nitric oxide in patients with colorectal carcinoma. Cytokine, 2002; 24; 20(4):184-90.
  • 89. Nakamura Y, Yasuoka H, Tsujimoto M, Yang Q, Tsukiyama A, Imabun S et al. Clinicopathological significance of vascular endothelial growth factor-C in breast carcinoma with long-term follow-up. Mod Pathol, 2003;16(4):309-14.