Akciğer kanseri tedavisinde farmakogenomik

Günümüzde akciğer kanseri erkeklerde en sık rastlanan ve ölümle sonuçlanan kanser tipleri arasında birinci sırayı almaktadır. Hastalığın tedavisine yönelik çalışmalarda en güncel ve önemli ivme insan genom yapısının belirlenmesi ve tümör biyolojisinin anlaşılması ile olmuştur. Farmakogenomik, tümör bağımlı gen mutasyonlarını inceleyerek ilacın hangi hastada hangi oranda daha etkili olacağını belirler. Farmakogenomik'e dayanan yöntemler ile direkt hastalığa yönelik kişiye spesifik tedavi yöntemleri uygulanarak en az yan etki ile hastayı iyileştirme yoluna gidilmektedir. Bunun yanında kişilerdeki gen mutasyonları detaylı incelenerek tümöre karşı ilaç duyarlılığının belirlenebilmesi tedavi seçiminde ve sonucunda çok önemli rol oynamıştır. Bu derleme kapsamında akciğer kanserinin tedavisinde hastaya özel tedavi yöntemine dayalı farmakogenomik uygulamaları ve hastalığın seyrine etkisi araştırılmıştır

Pharmacogenomics in lung cancer treatment

Lung carcinoma is the most common cause of cancer-related death in men among other cancer types in last years. The most recent and significant step in the treatment of the disease is the determination of the human genome structure and understanding of tumor biology. Pharmacogenomics examines tumordependent gene mutations to determine in which patient the drug will be more effective. Personalized treatments that are specified directly to disease by using pharmacogenomics methods are applied to cure patients with minimum side effects. Also, determining sensitivity of drug against tumor by examining gene mutations in patients plays a crucial role in selection and outcome of treatment. Patient-specific pharmacogenetic applications in lung carcinoma treatment and their effects on prognostic of disease were reviewed in this study

___

  • 1. Vogel F. Moderne probleme der humangenetik. Ergeb Inn Med Kinderheilkd, 1959; 12: 52–125.
  • 2. Meyer UA. Pharmacogenetics five decades of therapeutic lessons from genetic diversity. Nat Rev Genet, 2004; 5: 669-76.
  • 3. Haydaroğlu A. Akciğer Kanserleri Tanı ve Tedavi. Ege Üniversitesi Basımevi, İzmir, 2000.
  • 4. Yener NA, Apa DD, Akciğer Kanserinde Morfolojik Tanı ve Sınıflama. Trd Sem, 2014; 2: 281-9.
  • 5. Huang YT, Heist RS, Chirieac LR, Lin X, Skaug V, Zienolddiny S, et al. Genome-wide analysis of survival in early-stage non-small-cell lung cancer. J Clin Oncol, 2009; 27: 2660-7.
  • 6. Zhang Y, Martens JW, Yu JX, Jiang J, Sieuwerts AM, Smid M, et al. Copy number alterations that predict metastatic capability of human breast cancer. Cancer Res, 2009; 69: 3795-801.
  • 7. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res, 2010; 70(5): 2085-94.
  • 8. Herbest RS, Lilenbaum R. Gemcitabine and vinorelbine cpmbinations in the treatment of nonsmall cell lung-cancer. J. Clin Oncol, 1999; 13: 1609.
  • 9. Krug LM, Rubinstein L, Sadephi A, Group LCS. Phase II trials of vinorelbine and doc-etaxel in the treatment of advanced non-small cell lung cancer. Semin Oncol, 1999; 26: 24-6.
  • 10. Sandler AB, Nemunaitis J, Denham C. Phase III trail of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small cell lung cancer. J Clin Oncol, 2000; 18: 120-2.
  • 11. Gazdar AF. Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med, 2009; 361: 1018-20.
  • 12. Kratz JR, He J, Van Den Eeden SK, Zhu Z-H, Gao W, Pham P, et al. A practical molecular assay to predict survival in resected non- squamous, non-smallcell lung cancer: development and international validation studies. Lancet, 2012; 379: 823-32.
  • 13. https://en.wikipedia.org/wiki/Imatinib (07.10.2016)
  • 14. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor mutations in lung cancer. Nat Rev Cancer, 2007; 7(3): 161-81.
  • 15. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 2004; 350: 2129- 39.
  • 16. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical responses to gefitinib therapy. Science, 2004; 304: 1497-500.
  • 17. Shan Y, Eastwood MP, Zhang X. 2012. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerisation. Cell, 2012; 149: 860-70.
  • 18. Kilic D, Findikcioglu A, Alver G, Akbulut H, Hatipoglu A. The diagnostic significance and the assessment of the value of vascular endothelial growth factor as a marker for success of chemical pleurodesis in malignant pleural effusion. J Biomed Eng, 2011; 4: 214-21.
  • 19. Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M, Franklin WA. Epidermal growth factor family of receptorsin preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer, 2003; 1: 29-42.
  • 20. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus Standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-smallcell lung cancer (EURTAC): a multicentre, open-label, randomised Phase 3 trial. Lancet Oncol, 2012; 13: 239-46.
  • 21. Bria E, Miella M, Cuppone F, Novello S, Ceribelli A, Vaccaro V, et al. Outcome of advanced NSCLC patients harboring sensitizing EGFR mutations randomized to EGFR tyrosine kinase inhibitors or chemotherapy as first-line treatment: a metaanalysis. Ann Oncol, 2011; 22(10): 2277-85.
  • 22. Lee JS, Park K, Kim S. A randomized phase III study of gefitinib (IRESSA™) versus standard chemotherapy (gemcitabine plus cisplatin) as firstline treatment for never-smokers with advanced or metastatic adenocarcinoma of the lung. J Thorac Oncol, 2009; 4(9): S283.
  • 23. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol, 2010; 11: 121-28.
  • 24. Zhou C, Wu YL, Chen G. Efficacy results from the randomised phase III OPTIMAL (CTONG 0802) study comparing first-line erlotinib versus carboplatin (CBDCA) plus gemcitabine (GEM), in Chinese advanced non-small-cell lung cancer (NSCLC) patients (pts) with EGFR activating mutations. ESMO 2010 late-breaking abstracts. Ann Oncol, 2010; 21: 86.
  • 25. Maemondo M, Inoue A, Kobayashi K. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 2010; 362: 2380-88.
  • 26. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lym- phoma kinase inhibition in non-small-cell lung cancer. N Engl J Med, 2010; 363: 1693-703.
  • 27. Kim DW, Ahn MJ, Shi Y, De Pas TM, Yang PC, Riely GJ. Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol, 2012; 30: 7533.
  • 28. Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol, 2009; 4: 444-7.
  • 29. Shaw AT, Camidge DR, Engelman JA, Solomon BJ, Kwak EL, Clark JW, et al. Clinical activity of crizotinib in adavanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol, 2012; 30(8): 863-7010.
  • 30. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, 2012; 486: 532-36.
  • 31. Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res, 2015; 4(1): 67-81.
  • 32. Kobayashi S, Boggon TJ, Dayaram T. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005; 352: 786-92.
  • 33. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005; 2: 73.
  • 34. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med, 2010; 2: 62-93.
  • 35. Hammerman PS, Sos ML, RamoS AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov, 2011; 1: 78-89.
  • 36. Seo AN, Jin Y, Lee HJ. FGFR1 amplification is associated with poor prognosis and smoking in nonsmall-cell lung cancer. Virchows Archiv, 2014; 465: 547-58.
  • 37. Jiang T, Gao G, Fan G, Li M, Zhou C. FGFR1 amplification in lung squamous cell carcinoma: a systematic review with meta-analysis. Lung Cancer, 2015; 87(1): 1-7.
  • 38. Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res, 2006; 12: 6652-62.
  • 39. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res, 2010; 70(5): 2085-94.
  • 40. Bergethon K, Shaw A, Ou SH, Katayama R, Lovely CM, McDonald NT, Massion PP, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 2012; 30(8): 63-70.
  • 41. Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A novel highly sensitive antibody allows for the routine detection of ALKrearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res, 2010; 16: 1561-71.
  • 42. Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci, 2012; 109: 2127-33.
  • 43. Miao L, Wang Y, Zhu S, Shi M, Li Y, Ding J, et al. Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients. BMC Cancer, 2014; 24(14): 369.