Melanoma hücrelerinin Sendai viral vektörleri ile verimli transdüksiyonu

Amaç: Yaşayan hücrelere gen salımı yapmak üzere pek çok viral vektör geliştirilmiştir. Sendai viral (SeV) vektörleri geçici gen ifadesi, geniş konak özgüllüğü, düşük patojenite ve yüksek immünojenite gibi özellikleri sayesinde gen aktarımı için önemli vektörlerdir. SeV vektörleri gen tedavisi, aşı teknolojileri ve rejeneratif amaçlı moleküler tıpta sıklıkla kullanılır.Yöntem: Bu çalışmada, farklı melanoma hücre dizilerinde SeV vektörlerinin gen aktarım verimlilikleri floresan mikroskop ve konfokal lazer taramalı mikroskop görüntüleme teknikleri ile değerlendirilmiştir. A375, MDA- MB- 435, G361 ve WM115 hücreleri yeşil flüoresan proteini (GFP) ifade eden SeV vektörleri tarafından farklı virüs derişimlerinde (enfeksiyon çarpanı (MOI): 1, 3 ve 9) transdükte edilmiştir. GFP ifadesi virüs inkübasyonundan 24 ve 48 saat sonrasında kontrol edilmiştir. Konfokal lazer taramalı mikroskop görüntüleme ile gen salım verimliliği hesaplanmıştır. Bulgular: Floresan mikroskop görüntüleme ile düşük virüs derişimlerinde dahi (enfeksiyon çarpanı: 1), A375, MDA -MB- 435, G361 ve WM115 hücrelerinin SeV tarafından verimli şekilde transdükte edildiği gösterilmiştir. Viral transdüksiyonu takiben, GFP kontrol gen aktivitesi 24 saat içerisinde gözlemlenmeye başlanmış ve 48 saatte artış göstermiştir. Transdüksiyondan 24 saat sonrasında hücrelerde hafif toksisite gözlemlenmiş olsa da 48 saat sonrasında hücreler toksisite etkisinden kurtularak çoğalmış ve verimli şekilde gen ifadesi göstermişlerdir. Konfokal lazer taramalı mikroskop görüntüleme sonucuna göre 48 saat sonunda tüm hücre dizilerinde hücrelerin %80'inden fazlası başarılı bir şekilde GFP genini ifade etmiştir. Sonuç: Sonuç olarak, SeV vektörleri melanoma hücrelerini yüksek verimlilikle transdükte edip gen ifadesini sağlamıştır. Bu çalışma SeV vektörlerinin melanoma orijinli hücrelerdeki kullanımını açığa çıkarmış ve SeV vektörlerinin kullanımını içeren kanser tedavi ve hücre programlama alanındaki gelecek çalışmalarına destek sağlamıştır

Efficient transduction of melanoma cells with Sendai viral vectors

Objective: Various viral vectors have been developed in order to delivery genes to living cells. Sendai virus (SeV) vectors are important viral vectors due to their properties suitable for gene delivery including transient gene expression, wide host cell specificity, low pathogenicity and strong immunogenicity. SeVs vectorss are highly used in molecular medicine in gene therapy, vaccine technology and regenerative. Methods: It was evaluated the gene delivery efficiency of SeV particles in various melanoma cell lines by using fluorescence microscope and confocal laser scanning microscope imaging techniques. A375, MDAMB-435, G361 and WM115 cells have been transduced with SeV vectors expressing green fluorescent protein (GFP) at different multiplicity of infections (MOI): 1, 3, and 9. GFP expression was checked at 24 and 48 hours later following transduction. Confocal laser scanning microscopy imaging was calculated to gene delivery efficiency. Results: It was showed that A375, MDA-MB-435, G361 and WM115 cells are efficiently tranduced by seV even at low virus concentration with fluorescence microscopy imaging. GFP reporter gene activity started to be observed in 24 hours and peaked in 48 hours following viral transduction. Slight toxicity was observed following viral transduction in all cell 24 hours later; however, cells recovered and proliferated resulting in efficient gene expression 48 hours later. According to the confocal laser scanning microscopy imaging, more than 80% of all cell lines expressed GFP 48 hours after viral transduction. Conclusion: In conclusion, SeV vectors successfully transduced and expressed GFP reporter gene in various melanoma cell lines with high efficiency. This study discovered the use of SeV vectors in melanomaoriginated cells and it can open up wide range of studies involving SeV vectors in cancer therapy and cellular reprogramming fields.

___

  • 1. Lamb RA, Kolakofsky D. Paramyxoviridae: The Viruses and Their Replication In: D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus (eds.), Fields virology, 4th ed., Philadelphia, Lippincott Williams & Wilkins, 2001:1305-40
  • 2. Li H-O, Zhu Y-F, Asakawa M, Kuma H, Hirata T, Ueda Y, et al. A Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus with Efficient Gene Transfer and Expression. J Virology, 2000;74(14):6564-9.
  • 3. Eguchi A, Kondoh T, Kosaka H, Suzuki T, Momota H, Masago A, et al. Identification and Characterization of Cell Lines with a Defect in a Post-adsorption Stage of Sendai Virus-mediated Membrane Fusion. J Biol Chem, 2000;275(23):17549-55.
  • 4. Bitzer M, Armeanu S, Lauer UM, Neubert WJ. Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med, 2003;5(7):543-53.
  • 5. Yonemitsu Y, Kitson C, Ferrari S, Farley R, Griesenbach U, Judd D, et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotech. 2000;18(9):970-3.
  • 6. Masaki I, Yonemitsu Y, Komori K, Ueno H, Nakashima Y, Nakagawa K, et al. Recombinant Sendai virusmediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system. FASEB J, 2001;15(7)1294-6.
  • 7. Murakami Y, Ikeda Y, Yonemitsu Y, Tanaka S, Kondo H, Okano S, et al. Newly-developed Sendai virus vector for retinal gene transfer: reduction of innate immune response via deletion of all enveloperelated genes. J Gene Med, 2008;10(2):165-76.
  • 8. Fujita S, Eguchi A, Okabe J, Harada A, Sasaki K, Ogiwara N, et al. Sendai Virus-Mediated Gene Delivery into Hepatocytes via Isolated Hepatic Perfusion. Biol Pharm Bull, 2006;29(8):1728-34.
  • 9. Goto T, Morishita M, Nishimura K, Nakanishi M, Kato A, Ehara J, et al. Novel Mucosal Insulin Delivery Systems Based on Fusogenic Liposomes. Pharmaceut Res, 2006;23(2):384-91.
  • 10. Shibata S, Okano S, Yonemitsu Y, Onimaru M, Sata S, Nagata-Takeshita H, et al. Induction of Efficient Antitumor Immunity Using Dendritic Cells Activated by Recombinant Sendai Virus and Its Modulation by Exogenous IFN-β Gene. J Immunol, 2006;177(6):3564-76.
  • 11. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, et al. Development of Defective and Persistent Sendai Virus Vector: A unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem, 2011;286(6):4760-71.
  • 12. Mochiduki Y, Okita K. Methods for iPS cell generation for basic research and clinical applications. Biotechnol J, 2012;7(6):789-97.
  • 13. Saga K, Kaneda Y. Virosome Presents Multimodel Cancer Therapy without Viral Replication. Biomed Res Int, 2013;2013:764706.
  • 14. dUra T, Okuda K, Shimada M. Developments in Viral Vector-Based Vaccines. Vaccines, 2014;2(3):624.
  • 15. Mahito N, Makoto O. Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine. Curr Gene Ther, 2012;12(5):410-6.
  • 16. Oishi K, Noguchi H, Yukawa H, Inoue M, Takagi S, Iwata H, et al. Recombinant Sendai Virus-Mediated Gene Transfer to Mouse Pancreatic Stem Cells. Cell Transplant, 2009;18(5):573-80
  • 17. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006;126(4):663-76.
  • 18. de Lázaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? J Control Release, 2014;185:37-44.
  • 19. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotech, 2015;33(11):1173-81
  • 20. Zhang X-B. Cellular Reprogramming of Human Peripheral Blood Cells. Genomics Proteomics Bioinformatics, 2013;11(5):264-74
  • 21. Bueno C, Sardina JL, Di Stefano B, Romero-Moya D, Munoz-Lopez A, Ariza L, et al. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBP[alpha]. Leukemia, 2015;30(3):674-82.
  • 22. Miere C, Devito L, Ilic D. Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells. In: Turksen K, Nagy A, editors. Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology. 1357: Springer New York; 2016:33- 44
  • 23. Yilmazer A, de Lázaro I, Taheri H. Reprogramming cancer cells: A novel approach for cancer therapy or a tool for disease-modeling? Cancer Lett, 2015;369(1):1-8.