Gen tedavisi ve biyogüvenlik

Gen tedavisi hastalıkları tedavi etmek veya önlemek amacıyla bir kişinin genlerinin ekspresyonunun değiştirilmesi olarak tanımlanabilir. Akademik ve ticari laboratuvarların zorlu çalışmaları ile 2006 yılı verilerine göre 1273 gen tedavisi klinik deneme protokolü etik çevrelerce onaylanmıştır. Ancak henüz sadece baş-boyun kanserleri için geliştirilen bir gen tedavisi ürünü rutin kullanım için Çin'de lisans alabilmiştir. Gen tedavisi denemelerindeki başarısızlıklar terapötik genlerin yetersizliğinden kaynaklanmamaktadır. Başanlı gen tedavisinin önündeki en önemli engel toksik olmayan gen aktarım sistemlerinin olmayışıdır. Gen tedavisinde viral ve viral olmayan çeşitli vektör sistemleri kullanılmaktadır ve her biri kendine özgü avantaj ve dezavantajlara sahiptir. Günümüzde en etkili gen aktarım araçları, genlerini hedef hücreye aktarma özellikleri nedeniyle, virüslerdir. Gen tedavisi kalıtsal tek gen hastalıkları ve kardiyovasküler hastalıkları da içine alan bir dizi hastalığın tedavisi amacıyla geliştirilmekteyse de özellikle kanser tedavisi daha öne çıkmaktadır. Gen tedavisinin pratikte yaygın uygulama alanı bulabilmesi tedavi genlerinin hücrelere yeterli dozlarda aktarılabilmesine, genin hastalıklı hücreleri hedefleyebilmesine ve aktarılan yeni genlerin vücut tarafından sıkı kontrol altında tutulabilme yollarının geliştirilmesine ve dolayısıyla da biyogüvenlik problemlerinin aşılmasına bağlıdır. Bu derlemede gen tedavisinde kullanılan vektör sistemleri anlatılacak ve biyogüvenirlik açısından değerlendirme kriterleri tartışılacaktır.

Gene therapy and biosafety

Gene therapy can be described as the approach to change gene expression of an individual to treat a disease. According to the annual gene therapy records in 2006, hard work of both academic and industrial laboratories resulted 1273 gene therapy clinical protocols that have been approved by ethical commitees. In spite of all these attempts there is only one licence so far and that has recently been given by China for the routine use of head and neck cancer treatment. A major obstacle to the successful application of gene therapy trials is not a insufficient amount of therapeutic genes, but the lack of nontoxic gene delivery systems. A variety of viral and non-viral systems are used for gene therapy and each system owns its specific advantages and disadvantages. In the current status, the most effective gene delivery tools are viruses because of their natural ability to transfer genes to target cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular diseases, but this approach has been most evident for cancer. In order that gene therapy can be used in clinical practice, delivery of therapeutic genes to cells at efficient doses, gene-targetting to the disease cells and tight-control of the delivered genes should be improved, by another means, biosafety problems needs to be solved. In this review, vector systems used in gene therapy will be explained and evaluation criterias for their biosafety will be discussed.

___

  • 1. Strachan T, Read AP. Chapter twenty one: New appro aches to treating disease. New York: Garland Science,2004.
  • 2. Hacein-Bey-Abina S, von Kaile C, Schmidt M, ve ark. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 2003; 302:415-19.
  • 3. Cavazzana-Calvo M, Lagresle D, Hacein-Bey-Abina S, ve ark. Gene therapy for severe combined immunode ficiency. Annu Rev Med, 2005; 56: 585-602.
  • 4. Kay M, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Med, 2001; 7:33-40.
  • 5. Pages JC, Bru T. Toolbox for retrovectorologist. J Gene Med, 2004; 6:67-82.
  • 6. Takeuchi Y, Porter CD, Strahan KM, ve ark. Sensitization of cells and retroviruses to human serum by (alpha 1 -3) galactosyltransferase. Nature, 1996; 379:85-88.
  • 7. Cosset F, Takeuchi Y, Battini JL, ve ark. High-titer pac kaging cells producing recombinant retroviruses resis tant to human serum. J Virol, 1995; 69:7430-36.
  • 8. Diaz R, Eisen T, Hart IR, ve ark. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J Virol, 1998; 72:789-95.
  • 9. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med, 2004; 6:164-71.
  • 10. Bergelson J, Cunningham JA, Droguett G, ve ark. Isolation of a common receptor for Coxsackie B viruses and adenoviruses2 and 5. Science, 1997; 275:1320-23.
  • 11. Wickham T, Mathias P, Cheresh DA, ve ark. Integrin-alpha-V-beta-3 and integrin-alpha-V-beta-5 promote adenovirus internalization but not virus attachment. Cell, 1993; 73: 309-19.
  • 12.Report of the National, Institutes of Health Recombinant DNA Advisory Committee. NIH Report. Assessment of adenoviral vector safety and toxicity. Hum Gene Ther, 2002; 13: 3-13.
  • 13.Havenga M, Lemckert AAC, Ophorst O, ve ark. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol, 2002; 76:4612-20.
  • 14. Roy S, Gao GP, Lu Y, ve ark. Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum Gene Ther, 2004; 15:519-30.
  • 15.Kim D, Niculescu-Duvaz I, Hailden G, veark. The emerging fields of suicide gene therapy and virotherapy. Trends Mol. Med, 2002; 8: S68-S73.
  • 16.Young L, Searle PF, Onion D, ve ark. Viral gene therapy strategies: from basic science to clinical application. J Pathol, 2006; 208: 299-318.
  • 17.Gardlik R, Palffy R, Hodosy J, ve ark. Vectors and delivery systems in gene therapy. Med Sci Monit, 2005; 11: RA110-21.
  • 18.Fink D, Glorioso JC. Engineering herpes simplex virus vectors for gene transfer to neurons. Nature Med, 1997; 3:357-59.
  • 19.Carpenter D, Stevens JG. Long-term expression of a foreign gene from a unique position in the latent herpes simplex virus genome. Hum Gene Ther, 1996; 7:1447-54.
  • 2O.Wallack M, Sivanandham M, Balch CM, ve ark. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase 111. randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg, 1998; 187:69-77.
  • 21.Lundstrom K. Alphavirus vectors as tools in cancer gene therapy. Technol Cancer Res Treat, 2002; 1:83-8.
  • 22.Vigna L, Naldini L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med, 2000; 5:308-16.
  • 23.Miyoshi H, Blomer U, Takahashi M, ve ark. Development of a self inactivating lentivirus vector. J Virol, 1998; 72: 8150-57.
  • 24.Schmidt-Wolf GaS-WI. Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med, 2003; 9:67-72.
  • 25.Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Gene Ther, 2003; 177:437-47.
  • 26.Acsadi G, Dickson G, Love DR, ve ark. Human dystrophin expression in mdx mice after intramuscular injection of DNAconstructs. Nature, 1991; 352:815-18.
  • 27.Vassaux G, Nitcheu J, Jezzard S, ve ark. Bacterial gene therapy strategies. J Pathol, 2006; 208:290-98.
  • 28.Carey R, van Zijl P, Foz ME, ve ark. Clostridlal oncolysis in man. Eur J Cancer, 1967; 3:37-46.
  • 29.Lİ X, Fu GF, Fan YR, ve ark. Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Carjeer Gene Ther, 2003; 10:105-11..
  • 30.Bauer H, Darji A, Chakraborty, T, ve ark. Salmonella-mediated oral DNA vaccination using stabilized eukaryotic expression plasmids. Gene Ther, 2005; 12: 364-372.
  • 31.Zelmer A, Krusch S, Koschinski A, ve ark. Functional transfer of eukaryotic _expression plasmids to mam¬malian cells by Listeria monocytogenes: a mechanistic approach. J Gene Med, 2005; 7:1097-112.
  • 32.Williams SG, Cranenburgh RM, Weiss AME, ve ark. Reprsessor Titration: A Novel System for Selection and Stable Maintenance of Recombinant Plasmids. Nucleic Acids Research, 1998; 26 (9): 2120-24.
  • 33.Soubrier F, Cameron B, Manse B, ve ark. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther. 1999; 6(8): 1482-8.
  • 34.Gerdes K, Thisted T, Martinussea J. Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol Microbiol, 1990;4(11): 1807-18.
  • 35.Doblhoff-Dier O, Collins CH. Biosafety: future priorities for research in health care. J Biotechnology, 2001; 85: 227-39.
  • 36.Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Human Gene Ther, 2005; 16:1013-24.
  • 37.Guan YS, Liu Y, Zhou XP, ve ark. p53 gene (Gendicine) and embolisation overcame recurrent hepatocellular carcinoma. Gut, 2006; 55(11): 1684