Enterokok türlerinde glikopeptid grubu antibiyotiklere direncin moleküler mekanizmaları ve gen aktarım yolları

Enterokoklar özellikle 1980'lerden sonra en önemli nozokomiyal enfeksiyon etkenlerinden biri haline gelmiş ve antibiyotiğe dirençli fırsatçı patojenler olarak dikkatleri üzerine çekmişlerdir. Son yıllarda çoklu antibiyotik direnci gösteren enterokok suşlarının ortaya çıkması ile enfeksiyonlarda kullanılan mevcut tedavi yöntemlerinin uygulanabilirliği kısıtlanmış ve glikopeptid, penisilin ve aminoglikozit grubu antibiyotiklere direnç geni taşıyan enterokok enfeksiyonları halk sağlığını tehdit eder olmuştur. Özellikle vankomisin ve teikoplanin gibi glikopeptid grubu antibiyotiklere kazanılmış ve indüklenebilir yüksek seviyede direnç içeren Vankomisine Dirençli Enterokok (VRE) suşlarının sayısı giderek artmıştır. Şu ana kadar enterokoklarda van Adan van G'ye kadar vankomisin direncinden sorumlu olduğu bilinen yedi farklı gen kümesinin dizilemesi yapılmış ve varlığı gösterilmiştir. Bu gen kümelerinden en iyi tanımlananı van A ve van B kümeleri olup klinik enterokoklarda en çok karşılaşılan direnç tiplerini oluştururlar. Van A tipi direnç gösteren VRE suşlarında görülen direncin nedeni, hücre duvarındaki peptidoglikan öncüsü D-ala-D-ala dipeptidinin, D-ala-D-lak depsipeptidi ile yer değiştirilmesi sonucu glikopeptidin 1000 kat daha az ilgiyle substratma bağlanabildiği bir modifikasyon ile vankomisinin hücre duvarı sentezini inhibe etmesinin engellenmesidir. Van C, Van E ve Van G tipi dirençlerde ise D-ala-D-serin şeklinde değişim söz konusudur. Bu direnç genlerinin enterokoklar arasında ve özellikle diğer Gram pozitif bakterilere plazmid ve transpozonlar aracılığıyla aktarımı, direncin hızla yayılmasına neden olarak tehlikeli boyutlara ulaşmıştır. Bu derlemede tüm dünyada olduğu gibi ülkemizde de geliştirdiği direnç mekanizmaları ile antibiyotik direncinin yayılımına yol açan enterokoklarda direnç kaynaklarının moleküler mekanizmaları irdelenmiş ve bu direnç kaynaklarının bilinmesinin, direncin önlenmesi ve yeni antibiyotik kullanım politikaları geliştirilmesi açısından önemi vurgulanmıştır.

Molecular mechanisms of resistance to glycopeptide antibiotics in enterococcus species and modes of gene transfer

Enterococci have emerged as major antibiotic-resistant opportunistic pathogens causing nosocomial infections, especially after 1980's. In the last decade, currently available alternatives for therapy of enterococcal infections became limited due to multiple antibiotic resistant strains and these enterococcal infections caused by these strains carrying glycopeptide, penicilin and aminoglycoside resistance genes, began to treat public health. Particularly the number of Vancomycin Resistant Enterocococci (VRE) have increased, carrying acquired and inducible high-level resistance genes to glycopeptide antibiotics in the course of time. Till now, seven different gene clusters responsible for glycopeptide resistance were sequenced and demonstrated from van A to van G. Of these clusters van A and van B gene clusters codes for the best described and the most encountered resistance phenotypes among clinical enterococci. The reason of Van A type glycopeptide resistance in enterococci is to prevent vancomycin to inhibit cell wall synthesis by modification of cell wall precursor D-Ala-D-Ala dipeptide to D-Ala-D-Lac depsipeptide which leads binding of vancomycin to its substrate with 1000-times lower affinity. In Van C, Van E and Van G type resistance, the modification is on D-ala-D-ser dipeptide. Plasmid and transposon-mediated transfer of these resistance genes between enterococci and specially to other Gram positive bacteria caused spread of resistance which reached to dangerous dimensions. In this review, it is emphasized the importance of knowing the source of genetic fundamentals in terms of controlling antibiotic resistance, and implementing new antibiotic policies for the control of enterococci which gave rise to the spread of resistance by developing antibiotic resistance mechanisms not only worldwide but also in Turkey.

___

  • 1. Uttley AHC, Collins CH, Naidoo J, and George RC. Vancomycin resistant enterococci. Letter. Lancet. 1988; 1:57-58.
  • 2. Arthur M, and Courvalin P. Genetics and mechanisms of glycopeptide resistance in Enterococci. Antimicrob Agents Chemother. 1993; 37:1593-1571.
  • 3. ZervosMJ, MikesellTS, and Schaberg DR. Heterogenityof plasmids determining high-level resistance to gentamicin in clinical isolates of Streptococcus faecalis. Antimicrob. Agents Chemother. 1986; 30:78-81.
  • 4. Leclercq R, Derlot E, Weber M, Duval J, and Courvalin P. Transfrable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 1989; 33:10-15.
  • 5. Handwerger S, Pucci MJ, and Kolokathis A. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother. 1990; 34: 358-360.
  • 6. Signoretto C, Boaretti M, and Canepari P. Clonning, sequencing and expression in Escherichia coli of the low-affinity penicillin binding protein of Enterococcus faecalis. FEMS Microbiol Letters, 1994; 123:99-106.
  • 7. Heaton MP, Discotto LF, Pucci MJ, and Handwerger S. Mobilization of vancomycin resistance by transposon- mediated fusion of a Van A plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene. 1996; 171:9-17.
  • 8. Woodford N, Chadwick PR, Morrison D, and Cookson BD. Strains of glycopeptide-resistant Enterococcus faecium can alter their van genotypes during an outbreak. J Clinic Microbiol. 1997; 36:2966-2968.
  • 9. Bozdoğan B, and Leclercq R. Plasmid-mediated coresistance to streptogramins and vancomycin in Enterococcus faecium HM103. Antimicrob Agents Chemoher. 1999; 43:2097-2098.
  • 10. Son R, Nimita F, Rusul G, Nasreldin E, Samuel L, and Nishibuchi M. Isolation and molecular characterization of vancomycin-resistant Enterococcus faecium in Malaysia. Letters in Appl Microbiol. 1999; 29:118-122.
  • 11. SimjeeS. and Gill M.J. 1997. Gene transfer, gentamicin resistance and Enterococci. J Hospital Infect, 36; 249-259.
  • 12. Basustaoglu A, Aydogan H, Beyan C, Yalcın A, and Unal S. First glycopeptide-resistant Enterococcus faecium isolate from blood culture in Ankara, Turkey. Emerg Infect Dis. 2001; 7(1): 1-2.
  • 13. Colak D, Naas T, Gunseren F, Fortineau N, Ogunc D, Gultekin M, and Nordmann P. First outbreak of vancomycin-resistant enterococci in a tertiary hospital in Turkey. J Antimicrob Chemother. 2002; 50: 397-401.
  • 14. Coleri A, Cokmus C, Ozcan B, Akçelik M, and Tukel C. Determination of antibiotic resistance and resistance plasmids of clinical Enterococcus species. J Gen Appl Microbiol. 2004; 50:213-219.
  • 15. Yenişehirli G, Bulut Y. Antibiotic resistance of Enterococci isolated from an intensive care unit. Türkiye Klinikleri, J Med Sci. 2006; 26:477-482.
  • 16. Handwerger S, Perlman DC, Altarac D, and McAuliffe V. Concominant high-level vancomycin and penicillin resistance in clinical isolates of Enterococci. Clinical InfecDis. 1992; 14:655-661.
  • 17. Lavery A, Rossney AS, Morrison D, Power A, and Keane CT. Incidence and detection of multi-drug-resistant Enterococci in Dublin hospitals. J. Med. Microbiol. 1997; 46:150-156.
  • 18. Çöleri, A. Türkiye kaynaklı klinik Enterococcus'ların antibiyotik dirençliliği. Ankara Üniversitesi, Biyoloji Anabilim Dalı, Fen Bilimleri Enstitüsü, Yüksek lisans, Ankara. Tezi. 2002; 1-93.
  • 19. Murray BE. Vancomycine-resistant Enterococcal infec tions. The New England J Medic. 2000; 342: 710-721.
  • 20. Guardabassi L, and Dalsgaard A. Occurence, structure, and mobility of TN1546-like elements in environmental isolates of vancomycin-resistant enterococci. Appl Environ Microbiol. 2004; 70:984-990.
  • 21. Aktaş O. Enterokok türlerinde glikopeptid, penisilin ve yüksek düzey aminoglikozid dirençlerinin araştırılması. SSK Eğitim İzmir Hastanesi (Uzmanlık tezi), 1999; 1-32.
  • 22. Ligozzi M, Lo Cascio G, and Fontana R. van A gene cluster in a vancomycin-resistant clinical isolate of Bacillus circulans. Antimicrob Agents Chemother. 1998; 42(8): 2055-2059.
  • 23. Gutmann L, Al-Obeid S, Billot-Klein D, Guerrier ML, and Collatz E. Synergy and resistance to synergy between p-lactam antibiotics and glycopeptids against glycopeptide resistant strains of Enterococcus faecium. Antimicrob Agents and Chemother. 1994; 38(4): 824-829.
  • 24. Hanrahan J, Hoyen C, and Rice LB. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob Agents Chemother. 2000; 44:1349-1351.
  • 25. Tremlett CH, Brown DFJ, and Woodford N. Variation in structure and location of van A glycopeptide resistance elements among enterococci from a single patient. J Clinic Microbiol. 1999; 37: 818-820.
  • 26. Leclercq R, and Courvalin P. Resistance to h glycopeptides in enterococci. Clin Infect Dis. 1997; 24; 545-554.
  • 27. Vincent S, Knight RG, Green M, Sahm DF, and Shlaes DM. Vancomycin Susceptibility and Identification of Motile Enterococci. J Clinic Microbiol. 1991; 29: 2335-2337.
  • 28. Perichon, B., Casadewall, B., Reynolds, P. and Courvalin, P. 2000. Glycopeptide Resistant Enterococcus faecium BM4416 Is a Van D-Type Strain with an Impaired D-Alanine:D-Alanine Ligase. Antimicrob. Agents Chemo. 44; 1346-1348.
  • 29. Leclercq R, Derlot E, Duval J, and Courvalin P. Plasmid mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med Microbiol. 1988; 9:275-302.
  • 30. Clewell DB. Bacterial sex pheromone-induced plasmid transfer. Cell. 1993; 73:9-12.
  • 31. Dunny GM, Leonard BAB, and Heberg PJ. Pheromone inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol. 1995; 177: 871-876.
  • 32. Camargo LBC, Barth AL, Pilger K, Seligman BGS, Machado ARL, and Darini ALC. Enterococcus sallinarum carrying the van A gene cluster: first report in Brazil. Brazilian Journal of Medical and Biological Research. 2004; 37:1669-1671.
  • 33. Centers for Disease Control and Prevention. Staphylococcus aureus resistant to vancomycin in United Nations, Morbidity and Mortality Weekly Report. 2002; 51 (26): 565-567.
  • 34. Patel R. Vancomycine-resistant enterococci in solid organ transplantation. Curr Opin Organ Transplant. 1999; 4:271-280.www.earss.rivm.nl. The European Antimicrobial Resistance Surveillance System (EARSS) internet sitesi, erişim tarihi 26.06.2008.